ВЕЩЕСТВЕННЫЕ ХАРАКТЕРИСТИКИ ШЛАКОВ И ОГНЕУПОРОВ ДРЕВНЕГО ЖЕЛЕЗОДЕЛАТЕЛЬНОГО ПРОИЗВОДСТВА В ПРИБАЙКАЛЬЕ

<u>Степанов¹ И.С.</u>, Кожевников² Н.О., Харинский³ А.В., Кустов³ М.С., Иванова³ Г.Н., Финкельштейн¹ А.Л., Васильева¹ И.Е., Шабанова¹ Е.В., Феоктистова¹ Л.П.

¹Институт геохимии им. А.П.Виноградова СО РАН, г. Иркутск, e-mail: ivanstep208@yandex.ru

²Институт нефтегазовой геологии и геофизики СО РАН, г. Новосибирск, e-mail: kozhevnikovno@ipgg.nsc.ru

³НИУ Иркутский государственный технический университет, г.Иркутск, e-mail: kharincky@mail.ru

За последнее время на территории Ангаро-Ленской и Байкальской культурно-исторических областей открыта и частично исследована серия объектов, связанных с получением железа (малоуглеродистой стали).

На территории Ангаро-Ленской культурно-исторической области выявленные объекты исследованы слабо и в основном представлены одиночными, разрозненными металлургическими остатками производства в долине реки Ангары, среди которых стоянки Каймыс II (Усть-Удинский район) [Кустов, 2007], Макарьевская V (Нукутский район), поселение Нельхай I (Аларский район).

Для Байкальской культурно-исторической области характерны объекты в виде площадок (металлургических центров), где фиксируется весь цикл получения железа (от обогащения руды до механической обработки «крицы»). На территории Приольхонья крупные центры зафиксированы и исследованы в пади Бурун-Хал (Бурун-Хал II, Бурун-Хал III) и с. Курма (Курма XVIII, Курма XXVIII, Курминское озеро I) [Харинский, Снопков, 2004]. На острове Ольхон площадки для производства металла частично исследованы в окрестностях с. Харанцы (Харанса VI) [Кустов, 2008] и залива Восточный Хунгай (Восточный Хунгай I). Возраст объектов производства металла в Приольхонье и о. Ольхон определен временными рамками конца I тыс. до н.э.-первой пол. I тыс. н.э. Также на о. Ольхон известны одиночные находки остатков металлургического производства (Улан-Хушинский залив) [Иванова и др., 2007].

В работе приведены результаты изучения вещественных характеристик образцов из вышеперечисленных металлургических центров и стоянок Прибайкалья и Приангарья.

Шлаки — продукты с высоким содержанием кристаллических и некристаллических фаз, образованные в процессе получения железа из руды или его обработки в топке (горновом гнезде) кузнечного горна. В большинстве шлаков содержание железа более 40 %, SiO₂ менее 30 % (табл.). По вещественным характеристикам различаются группы окисных, окисно-силикатных, известково-окисно-силикатных, силикатных шлаков. Каждая группа представлена расплавными и спеченными шлаками. Расплавные шлаки — сравнительно гомогенные продукты, которые образуются из расплава с большой долей стекла. Спеченные шлаки являются гетерогенными продуктами, состоящими из реликтов первичного материала и новообразованных фаз из расплава.

<u>Окисные шлаки</u> представлены преимущественно окислами железа. Для них характерен значительный удельный вес (4-5 г/см³), черный цвет, повышенная магнитность. Доминирующие минералы представлены вюститом и магнетитом, помимо них присутствуют фаялит и стекло. Содержание железа высокое -50-60 %, SiO_2 низкое -<20 % (табл., выборка 1, 2). Количество Al_2O_3 , Na_2O , K_2O , MgO, CaO, Sr, Ba понижено, а Zn- повышено.

Расплавные окисные шлаки отмечаются в центрах: Курминское озеро I, Барун-Хал II, Барун-Хал III, Харанса VI, Восточный Хунгай I. Они обладают флюидальной текстурой. Количество вкрапленников руд и вторичных минералов в этих продуктах не превышает 15 %. Расплавные окисные шлаки пади Барун-Хал отличаются тем, что содержат пониженное количество металлического железа.

Таблица Средний химический (масс.%) и редкоэлементный (г/т) состав шлаков и огнеупоров железоделательных центров Прибайкалья.

Компо	1	2	3	4	5	6	7	8	9	10	11	12
нент	(5;13)	(8;13)	(3;10)	(4;7)	(3;22)	(3;15)	(3;4)	(3;6)	(5;14)	(8;20)	(1;1)	(1;7)
SiO ₂	17.84	12.37	24.25	23	24.05	26.09	30.45	39.36	61.05	60.39	32.9	47.65
TiO_2	1.43	1.02	2.08	1.74	0.38	0.33	0.45	0.95	0.95	0.73	1.18	1.82
Al_2O_3	4.38	3.44	7.14	6.35	6.49	7.03	8.07	9.77	22.67	16.1	11.2	15.54
*FeO	68.66	72.5	56.25	58.4	57.52	54.64	43.57	36.03	7.80	13.24	6.89	10.94
MnO	0.5	0.48	0.85	0.49	0.35	0.31	0.58	0.42	0.22	0.34	0.14	0.2
MgO	0.72	0.74	0.8	0.99	1.28	1.27	2	1.59	0.7	1.32	3.44	3.45
CaO	3.35	1.69	1.97	2.23	7.88	7.13	11.22	5.67	1.23	2.49	21.71	10.84
P_2O_5	0.3	0.73	0.27	0.21	0.15	0.2	0.16	0.34	0.2	0.22	0.44	0.94
K_2O	0.52	0.33	0.96	0.81	0.69	0.8	0.75	1.56	1.74	2.42	1.2	2.15
Na ₂ O	0.23	0.21	0.4	0.55	0.25	0.23	0.22	1	0.33	0.95	3.69	4.37
Ba	233	191	366	326	349	354	581	630	705	818	385	484
Sr	76	110	177	129	146	126	132	391	213	204	887	1117
Zr	35	55	135	177	29	28	60	116	200	227	229	318
Zn	86	84	72	77	62	59	55	68	178	116	120	120
Cr	45	50	84	61	37	35	47	63	74	97	20	26
V	320	290	355	315	79	63	107	195	142	142	88	72

Примечание. 1 — расплавный окисный шлак, 2 — спеченный окисный шлак. 3 — расплавный окисно-силикатный шлак, 4 — спеченный окисно-силикатный шлак, 5 — расплавный известковый окисно-силикатный шлак, 6 — спеченный известковый окисно-силикатный шлак, 7 — расплавный силикатный шлак, 8 — спеченный силикатный шлак, 9 — сцементированный алюмосиликатный огнеупор, 10 — ошлакованный алюмосиликатный огнеупор, 11 — сцементированный известково-алюмосиликатный огнеупор.

В скобках через точку с запятой первое число – количество центров, второе число – количество проб в выборке.

Спеченные окисные шлаки встречаются в производственных центрах Курминское озеро I, Барун-Хал II, Барун-Хал III, Харанса VI, Восточный Хунгай I, стоянка Макарьевская V, в районе залива Улан-Хушин. Для них характерны чашевидные формы, большое количество (до 50 %) реликтов руд, гематита, гетита. Спеченные окисные шлаки всех центров Приольхонья отличаются структурно-текстурным многообразием.

Различия по химическому составу между расплавными и спеченными окисными шлаками заключаются в том, что расплавная группа шлаков содержит больше стекла и для нее характерны повышенные концентрации Si_2O , Al_2O_3 , CaO, Ba, а спеченная – содержит больше реликтов руд и имеет повышенное содержание железа.

Окисно-силикатные шлаки — продукты, которые наряду с преобладающим фаялитом содержат 15-30 % окислов железа, стекло. Для них характерны значительный удельный вес $(3.5\text{-}4.5 \text{ г/см}^3)$, серо-зеленая окраска. Содержания железа 44-45 %, SiO_2 20-26 % (табл., выборка 3, 4). В окисных шлаках концентрации Al_2O_3 , MgO, Ba, Zn ниже, чем в окисно-силикатных шлаках, а в силикатных шлаках — выше. Количество MnO, TiO_2 , V, Cr повышено в окисно-силикатных шлаках. Это связано с тем, что окисно-силикатная группа шлаков в основном представлена шлаками с о. Ольхон (Харанса VI, Восточный Хунгай I, шлаки с Улан-Хушинского залива), для которых характерны высокие концентрации этих элементов. Близкие химические характеристики шлаков о. Ольхон, вероятно, объясняются единым типом руд, обогащенных MnO, TiO_2 , V, Cr, использованных для производства железа.

^{*}Содержание железа, выраженное в виде FeO

Расплавные окисно-силикатные шлаки распространены в центрах Харанса VI, Курминское озеро I, в районе залива Улан-Хушин. Они состоят из слипшихся веревковидных выделений. В шлаках центра Харанса VI и с Улан-Хушинского залива отмечаются повышенные содержания минералов группы магнетита (10-20 %). В шлаках железоделательного центра Курминское озеро I содержание магнетита низкое (2 %).

Спеченные окисно-силикатные шлаки характерны для центров Харанса VI, Барун-Хал III, стоянки Каймыс II, района залива Улан-Хушин. Они содержат некоторое количество (до 15 %) реликтов руд, флюса, огнеупора. В харанцинских и улан-хушинских шлаках количество минералов группы магнетита достигает 10-15 %.

Химические различия между спеченными и расплавными окисно-силикатными шлаками несущественны.

Известково-окисно-силикатные шлаки распространены в центрах Приольхонья (Барун-Хал II, Барун-Хал III, Курминское озеро I). В них помимо фаялита, вюстита, стекла содержатся кальциевые минералы: монтичеллит, кирштейнит (?), мелилит и почти отсутствует металлическое железо. Для этих шлаков характерны значительный удельный вес $(3.5-4.5 \text{ г/см}^3)$, зеленая и серая окраска. По содержанию железа и SiO_2 они сходны с окисно-силикатными шлаками, однако отличаются от них по содержаниям CaO 5-10 % (табл., выборка 5, 6). Повышенное количество извести, вероятно, обусловлено добавками в шихту известкового флюса. Концентрации Al_2O_3 , TiO_2 , MnO, P_2O_5 , K_2O , Ba, Sr, Zn в известково-окисно-силикатных шлаках выше, чем в окисных шлаках, но ниже, чем в силикатных.

Расплавные известково-окисно-силикатные шлаки морфологически сходны с расплавными окисно-силикатными шлаками. Главные фазы представлены фаялитом, вюститом, стеклом. Расплавные шлаки центров Барун-Хал II, Барун-Хал III содержат 45-55 % оливина, 35-40 % стекла, 5-15 % вюстита. Шлак Курминского Озера I содержит 60 % оливина, 20 % стекла, 15 % вюстита.

Спеченные известково-окисно-силикатные шлаки наряду с новообразованными фазами, содержат до 20 % реликтов руд, огнеупоров, флюса, окисленного железа. Они имеют неровную поверхность, пористую текстуру, порфировую и гетерогенную структуры. В спеченных шлаках центров Барун-Хал II, Барун-Хал III количество стекла составляет 30-45 %, а в шлаках Курмы – понижено (25 %).

По химическому составу расплавные и спеченные известково-окисно-силикатные шлаки сходны между собой.

Силикатные шлаки — продукты, состоящие преимущественно из силикатных фаз: оливина, пироксена, плагиоклаза, мелилита, стекла. Для них характерны средний удельный вес $(3-4 \text{ г/см}^3)$, светло-зеленая окраска. Повышенные количества железа 28-34% и SiO_2 30-40% (табл., выборка 7, 8) обуславливают появление пироксенов. Высокие концентрации Al_2O_3 8-10%, CaO 6-11% способствуют кристаллизации анортита, мелилита, шпинели.

Расплавные силикатные шлаки отмечаются во всех центрах Приольхонья. Они имеют флюидальную текстуру, неполнокристаллическую структуру. Главные фазы представлены оливином, пироксеном, стеклом. В расплавном шлаке центра Барун-Хал III оливин составляет 30 %, пироксен -20 %, стекло -40 %; Курминского озера I оливин -45 %, пироксен -5 %, вюстит -10 %, стекло -40 %.

Спеченные силикатные шлаки распространены в центрах Барун-Хал II, Харанса VI, на стоянке Макарьевская V. Они имеют неровную поверхность, гетерогенную структуру. Эти продукты содержат 10-50 % вкрапленников огнеупора, флюса. Оставшуюся часть в них составляют оливин, пироксен, плагиоклаз, мелилит, шпинель, магнетит, вюстит и стекло. Шлаки центра Барун-Хал II содержат повышенное количество плагиоклаза (10-30%). В шлаке с Макарьевской V количество окислов сильно варьирует: 0-30 %. В шлаках Харанса-VI содержание стекла составляет 40-50 %.

Отличия по химическому составу расплавных силикатных шлаков от спеченных силикатных заключаются в том, что расплавные шлаки обогащены FeO, MgO, MnO, а спеченные $-\operatorname{SiO}_2$, $\operatorname{Al}_2\operatorname{O}_3$, TiO_2 , $\operatorname{P}_2\operatorname{O}_5$, $\operatorname{K}_2\operatorname{O}$, $\operatorname{Na}_2\operatorname{O}$, Ba, Sr, Zr, Zn.

Огнеупоры – материалы, способные противостоять воздействию высоких температур, которыми покрывались внутренние стенки горна. Основой для производства огнеупоров служила глина, которую, добывали вблизи железоделательных центров. Для придания жаропрочных свойств и понижения пластичности глины в нее добавлялся кварц.

Для огнеупоров характерны неоднородность, слоистость, легкий удельный вес $(2.5-3.5 \, \text{г/см}^3)$, разнообразные окраски. Слагающее эти продукты вещество с внешней стороны сцементировано, с внутренней — остекловано и ошлаковано. Сцементированная структура, сформирована под воздействием низких температур (300-500°С) и обладает невысокой прочностью. Более прочная стекловатая структура образована вследствие воздействия повышенных температур (до 600-1300°С) и шлакового расплава, что также фиксируется повышенными концентрациями железа, K_2O , Na_2O (табл., выборка 10, 12). Между сцементированной и стекловатой структурами огнеупора наблюдается постепенный переход.

По химическому составу огнеупоры от шлаков отличаются более высокой суммой $SiO_2+Al_2O_3$ (более 45 %), повышенными концентрациями K_2O , Na_2O , MgO, Ba, Sr, Zr, Zn и пониженными содержаниями железа (< 12 %).

Различия в группе огнеупоров обусловлены разным химическим составом глин, использовавшихся для их изготовления. На территории Прибайкалья выделяются два типа огнеупоров: алюмосиликатные и известково-алюмосиликатные. Алюмосиликатные огнеупоры (табл., выборка 9, 10) по сравнению с известково-алюмосиликатными (табл., выборка 11, 12) обогащены железом, Si_2O , Al_2O_3 , Ba и обеднены CaO, MgO, Na_2O , Sr, Zr.

Алюмосиликатные огнеупоры Прибайкалья представлены двумя видами: прочными целиком остеклованными огнеупорами с отчетливой сланцеватостью и плойчатостью из центра Курминское озеро I; менее прочными огнеупорами остальных производственных центров. Курминские огнеупоры древний человек, получал из глины, обогащенной слюдой [Харинский, Снопков 2004]. За счет калия температура плавления огнеупора, вероятно, могла существенно снижаться, он быстрее оплавлялся, приобретал сланцеватую текстуру, стекловатую структуру и, как следствие, повышенную прочность.

Известково-алюмосиликатные огнеупоры встречаются только на производственном комплексе Харанса VI. Вероятно, здесь было известно месторождение известковых глин.

Полученные первые данные по вещественному составу шлаков из Прибайкальских центров железоделательного производства свидетельствуют о том, что по фазовому составу, содержанию главных элементов (SiO_2 , FeO, Al_2O_3 , CaO) они идентичны шлакам известных в мире центров получения железа (Великобритания, Швейцария, Германия и др.).

Планируемые работы по изучению руд, шлаков и огнеупоров железоделательного производства позволят получить информацию о древних технологиях, их различиях в исторические периоды. В конечном счете, предполагается создать научную основу для проведения вещественных и возрастных корреляций с известными железоделательными центрами соседствующих народов и цивилизаций Центральной Азии и Европы.

Работа выполнена при поддержке гранта РФФИ № 10-05-00263.

Литература

Иванова Г.Н., Левицкий В.И., Павлова Е.А. Вещественный состав материала железоделательного производства на острове Ольхон // Известия Сибирского отделения секции наук о Земле РАЕН. Геология, поиски и разведка рудных месторождений. 2007. Т. 4(30). С. 100-111

Кустов М.С. Разведка по правому берегу Братского водохранилища // AO 2005 года. – М., 2007. С. 484-485.

Кустов М.С. Спасательные работы на поселенческо-производственном комплексе Харанса VI на о. Ольхон // AO 2007 года. – М., 2008. С. 59.

Харинский А.В., Снопков С.В. Производство железа населением Приольхонья в Елгинское время // Известия. Лаборатории древних технологий. 2004. Т. 2. С. 167-187.