

Всероссийское совещание «Современные проблемы геохимии», посвященное 95-летию со дня рождения академика Л.В.Таусона

Уравнения состояния и термодинамические функции слоистых минералов

<u>Соколова Т.С.¹</u>, Дорогокупец П.И.²

¹ИЗК СО РАН, <u>sokolovats@crust.irk.ru;</u>²ИЗК СО РАН, <u>dor@crust.irk.ru</u>

Институт земной коры СО РАН, г.Иркутск

«Каждый минерал характеризуется своей конституцией – только ему присущим определением единства его кристаллической структуры и химического состава». [Д.П.Григорьев. Основы конституции минералов. 1966].

 Уравнения состояния металлов и веществ (MgO, NaCl, алмаз и др.)

Уравнение состояния графита (С)

Dorogokupets, et. al. Near-absolute EOS of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions // Geodynamics & Tectonophysics. 2012. V 3, № 2. P. 129-166.

Свободную энергию Гельмгольца в общем виде можно представить согласно [Жарков, Калинин, 1968]:

$F(T,V) = E_0 + E(V) + F_{th}(V,T) + F_a(V,T),$

 E_{0} E(V) $F_{th}(V,T)$ $F_{a}(V,T)$

Уровень отсчета энергии для нормировки справочных значений (при T=298.15 K, P=1 бар)

Потенциальная (холодная) часть свободной энергии Гельмгольца

Квазигармоническая (тепловая) часть свободной энергии Гельмгольца

Дополнительная часть свободной энергии, которая учитывает *Fe* (для металлов) и *Fanh*

Потенциальная энергия на отсчетной изотерме (О К или 298 К) определяет давление в функциональной зависимости от объема - P(V): Уравнение Мурнахана

$E(V) = V_0 \left(\frac{K_0}{K'} (1-x) + \frac{K_0}{K'(1-K')} (x^{1-K'} - 1) \right),$ Уравнение Берча- $P(V) = \frac{K_0}{K'} (x^{-K'} - 1),$ Мурнахана $E(V) = \frac{9}{2}V_0K_0f^2(1 + \frac{2}{3}af),$ • Уравнение Вине $K_T(V) = K_0 x^{-K'}$ $P(V) = 3fK_0(1+2f)^{\frac{5}{2}}(1+af),$ [Vinet et.al., 1987] $K_T(V) = K_0(1+2f)^{5/2}[1+(7+2a)f+9af^2],$ $E(V) = 9K_0V_0\eta^{-2}\{1 - [1 - \eta(1 - y)]\exp[(1 - y)\eta]\}$ $P(V) = 3K_0 v^{-2}(1-v) \exp[(1-v)\eta]$ Уравнение Хольцапфеля $K_T(V) = K_0 y^{-2} [1 + (\eta y + 1)(1 - y)] \exp[(1 - y)\eta],$ [Holzapfel, 2001] Уравнение Кунца $E(V) = \int P(V)$ [Kunc et.al., 2003] $P(V) = 3K_0 X^{-5} (1 - X) \exp[c_0 (1 - X)] \cdot [1 + c_2 \cdot X (1 - X)]$ $E(V) = \int P(V)$ $K_{T}(V) = -V(dP/dV)_{T}$ $P(V) = 3K_0 X^{-k} (1-X) \exp[n(1-X)]$

 $K_T(V) = -V(dP/dV)_T$

Давление на комнатной изотерме находим согласно уравнению Кунца [Kunc et.al., 2003]:

$$P(V) = 3K_0 X^{-k} (1 - X) \exp[\eta (1 - X)]$$

60

где

X = (V/V)

$$K' = (\partial K_0 / \partial P)$$

k – подгоночный параметр

Тепловая часть свободной энергии Гельмгольца может быть выражена моделью Эйнштейна с двумя характеристическими температурами:

$$F_{th}(V,T) = m_1 R T \ln\left(1 - \exp\left(\frac{-\Theta_1}{T}\right) + m_2 R T \ln\left(1 - \exp\left(\frac{-\Theta_2}{T}\right) - \frac{3}{2}nRe_0x^gT^2\right)$$

$$Aanee путем дифференцирования определяем остальные термодинамические функции:
$$\Theta = \Theta(V,T) = \Theta(V)\exp\left(\frac{1}{2}aT\right) = \Theta(V)\exp\left(\frac{1}{2}a_0x^mT\right)$$

$$S = -\left(\frac{\partial F}{\partial T}\right)_V = 3nR\left[-\ln\left(1 - \exp\left(\frac{-\Theta}{T}\right) + \frac{\Theta/T}{\exp(\Theta/T) - 1}\times\left(1 - \frac{1}{2}a_0x^mT\right)\right] + 3nRe_0x^gT,$$

$$E_{th} = F_{th} + TS = 3nR\left[\frac{\Theta}{\exp(\Theta/T) - 1}\times\left(1 - \frac{1}{2}a_0x^mT\right)\right] + \frac{3}{2}nRe_0x^gT^2$$

$$P_{th} = -\left(\frac{\partial F_{th}}{\partial V}\right)_T = 3nR\left[\left(\frac{\Theta}{T}\right)^2 \frac{\exp(\Theta/T)}{\left[\exp(\Theta/T) - 1\right]^2}\times\left(1 - \frac{1}{2}a_0x^mT\right) - \frac{\frac{1}{4}(a_0x^m)^2T\Theta}{\exp(\Theta/T) - 1}\right] + 3nRe_0x^gT$$

$$K_{Th} = -V\left(\frac{\partial P_{th}}{\partial V}\right)_T \qquad a = (dP/dT)_V/K_T \qquad G(T, P) = F(T, V) + PV$$

$$C_P = C_V + a^2TVK_T \qquad K_S = K_T + VT(aK_T)^2/C_V \qquad H = E + PV$$$$

Параметр Грюнайзена в зависимости от объема напрямую влияет на надежность расчета термодинамических функций при высоких Р-Т условиях:

Классическая формула

 $\gamma = \gamma_0 x^q$

 $\Theta = \Theta_0 \exp[\gamma_0(1-x^q)/q]$

 Обобщенное уравнение Слейтера, Дугдалда-Мак-Дональда,
 Зубарева-Ващенко

$$\gamma = \frac{\frac{K'}{2} - \frac{1}{6} - \frac{t}{3} \left(1 - \frac{P}{2K} \right)}{1 - \frac{2tP}{3K}} + \delta$$
$$\Theta = \Theta_0 x^{1/6} K_0^{-1/2} \left(K - 2tP/3 \right)^{1/2}$$

Альтшулер [1987]

$$\gamma = \gamma_{\infty} + (\gamma_0 - \gamma_{\infty}) x^{\beta}$$
$$\Theta = \Theta_0 x^{-\gamma_{\infty}} \exp\left[\frac{\gamma_0 - \gamma_{\infty}}{\beta} (1 - x^{\beta})\right]$$

Графит (С)

А. Изобарная и изохорная теплоемкость графита. В. Адиабатический и изотермический модули сжатия. С. Коэффициент термического расширения. D. Рассчитанная комнатная изотерма, ударно-волновые данные и экспериментальные измерения. Линии – наш расчет.

Рассчитанные термодинамические функции графита, табулированные по температуре при давлениях 0, 10 и 20 GPa

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	ΔG
GPa	Κ		\mathbf{K}^{-1}	$\mathbf{J} \operatorname{mol}^{-1} \mathbf{K}^{-1}$		GPa		-	$kJ mol^{-1}$	
0	298.15	1	24.68	5.72	8.53	8.49	36.00	36.15	0.554	0.000
0	500	1.0054	27.76	11.64	14.67	14.59	34.50	34.66	0.350	-1.750
0	1000	1.0202	30.64	24.51	21.77	21.61	30.69	30.91	0.235	-10.954
0	2000	1.056	39.27	40.90	25.09	24.69	22.96	23.33	0.204	-44.414
0	3000	1.1072	58.71	51.35	26.53	25.64	14.69	15.20	0.197	-90.844
0	4000	1.2155	185.09	59.29	30.02	26.21	4.31	4.94	0.196	-146.283
10	298.15	0.8616	8.78	5.05	8.26	8.25	108.32	108.46	0.526	48.591
10	500	0.8633	9.87	10.88	14.58	14.56	107.07	107.25	0.332	46.989
10	1000	0.8676	10.18	23.71	21.68	21.63	103.93	104.17	0.225	38.176
10	2000	0.8767	10.60	39.98	24.81	24.71	97.76	98.16	0.195	5.574
10	3000	0.8862	11.12	50.25	25.82	25.66	91.66	92.23	0.187	-39.857
10	4000	0.8964	11.72	57.78	26.48	26.25	85.63	86.35	0.182	-94.038
20	298.15	0.8013	5.72	4.74	8.13	8.12	171.43	171.58	0.513	92.518
20	500	0.8023	6.50	10.54	14.54	14.53	170.23	170.41	0.324	90.983
20	1000	0.805	6.68	23.35	21.67	21.64	167.21	167.45	0.220	82.349
20	2000	0.8104	6.82	39.61	24.78	24.72	161.25	161.67	0.191	50.114
20	3000	0.8161	6.98	49.86	25.77	25.67	155.39	155.98	0.183	5.066
20	4000	0.8218	7.16	57.37	26.40	26.27	149.58	150.34	0.178	-48.715

Мусковит (KAl2[AlSi3O10](OH)2)

 А. Изобарная и изохорная теплоемкость мусковита. В. Коэффициент термического расширения. С. Адиабатический и изотермический модули сжатия. Линии – наш расчет.

Рассчитанная линия равновесия системы алмаз-графит. Полученные нами значения близки к данным Liu, [2002]. НР98 и НР11 обозначают термодинамические базы данных Holland, Powell [1998], [2011], соответственно.

Все таблицы для алмаза и металлов с рассчитанными термодинамическими функциями и различные сравнения можно найти в работе:

Дорогокупец П.И., Соколова Т.С., Данилов Б.С., Литасов К.Д. Почти абсолютные уравнения состояния алмаза, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W для квазигидростатических условий // Geodynamics & Tectonophysics. 2012. V 3, № 2. P. 129-166. http://dx.doi.org/10.5800/GT-2012-3-2-0067

Благодарность:

проф. В.Б. Полякову (ИЭМ РАН, Черноголовка)

Благодарю за внимание!

Работа выполнена при поддержке РФФИ (№ 12-05-00758-а)