REMOTE SENSING METHODS FOR INVESTIGATING OUTGOING INFRARED RADIATION OF RECENT LARGE REGIONAL FAULTS AND ITS TERRESTRIAL HEAT FLOW AND GEOCHEMICAL HALOES

N.V.Vilor, L. D.Andru Jaitis, O. V.Zarubina, B. S.Danilov, and A. V.Klyuchevsky Institute of Beochemistry SB RAS, Irkutsk Institute of the Earth's Crust of Reast Juluet

THE MOUNTAIN KING'S ARMCHAIR

Purpose

Determination of intensity of outgoing IR radiation flow of large seismoactive regional faults, which are expose by surface heat flows by remote sensing method and correlation this flow with transfer of mobile chemical elements and its geochemical flows

Items

• the remote sensing method of mapping of distribution of intensity of outgoing IR radiation flow for different geodynamic situation_

[•] the investigation of nature of surface outgoing IR radiation flow_

 <u>the investigation of distribution</u> of mobile chemical elements into surface formations of regional faults _

• the calculation of its geochemical flows by using the conception of geochemical barriers

THE SCHEME OF THE ORIGIN OF THE SURFACE INFRARED RADIATION OF THE LARGE REGIONAL FAULTS

Geodynamical situations of manifestation of outgoing surface IR radiation flow of large seismoactive regional fault

Type of regional deformation	Region						
Tention, rifting	Baikal rift zont (BRZ), Rhine graben, "Afar triangle" + Eastern – African rift						
Displacement	San – Andreas transform fault system						
Collision	Himalayas, Western- Copetdag structural arc						
Block compression, ramp situation	Tarim basin and its folded frame						

The low length wave of geometric component of plots of outgoing surface IR flows of BRZ'largest

The structural map of Rhine
graben.graben.springs(after Friedrichsen,1981)

Europa part with Rhine graben. A, B, C – large regional faults (after Gorni V.I. 2007) famous water spring

The outgoing surface IR flow map of Afar depression and mouth of Eastern African rift

The correlation of the depth of bedding of Moho surface and outgoing IR flow

<u>The displacement geodynamic</u> <u>situation</u>. IR radiation distribution on western part of USA(A) and structural maps of San-Andreas transform fault (B) and Big Basin province (C) (after R.L.Cook andJ.A.Thomson, 1970)

Points of dimention

IR radiation anomalie s of the surface of large faults of San **Andreas** system (1-3) and on faults of Big **Basin** province (4-6) F – fault's tracks

Structural (A) and IR radiation flow intensity (B) maps of the main bord er

The new map of Moho surface for Chinese territory

by Baranov, @Earth Physics, N1, 2009 Ramp situation

opes of the uplifted block

of the upper crust, which corres-ponds to the massif of the Tarim platform.

Brightness of the contrast outgoing surface IR flow for the Tarim platform and its framing (January 2001, night)

> The distribution of IR⁴⁵ flux intensity across Tarim platform

The transition to the values of brigthness			
measured for the surface IR flow can be made with the use of the following relation $\mathbf{F} = \mathbf{L} \cdot \mathbf{G}$ (Gossorg, 1980) (1),	Fac	lioi	ness flow,
were F - surface IR flow , L - brightness IR flow G - geometric factor, which writes	,		cr.µµ
G = π · S · sin2 α = 6.8704 (m2. ster).			
Hence the surface IR flow F computed by (1) makes: F = 6.8704 L (mW).	Tunł	a	103.0
Values of F are added for the components, which form its balance . The addends of such a balance	Barg zun	100	85.4
include: Fgr – heat flow of the active ground laye (the result of heat inertia), Fc – heat effect of the	r _{Nea} sea	r-	112.2
vapor, F pch – heat effect of the process of	Borc	ler e of	103. The
upper part of the active layer Ed - component	platf		ofl
of the deep heat flow Hence we have:			hae
F = Fgr + Fc + F pch + Fd		Fau strue re	lt ctu-
The sub-surface endogenic flow Fd is the			
sum of influences of the conductive and			
the convective components upon the			
= L · G (Gossorg, 1980) (1), where F - surface IR flow , L - brightness IR flow, a - geometric factor, which writes a = $\pi \cdot \mathbf{S} \cdot \sin 2 \alpha = 6.8704$ (m ² . ster). Hence the surface IR flow F computed by (1) makes: F = 6.8704 L (mW). alues of F are added for the components, which makes: F = 6.8704 L (mW). alues of F are added for the components, which must balance. The addends of such a balance provement is balance. The addends of such a balance must of heat inertia), Fc – heat effect of the urface condensation or crystallization of water apor, F pch – heat effect of the process of xidation of gases coming from the ground in the pper part of the active layer, Fd – component f the deep heat flow. Hence, we have: a = Fgr + Fc + F pch + Fd The sub-surface endogenic flow Fd is the um of influences of the conductive and he convective components upon the adiating layer. The difference between the alue of the near-surface endogenic flow id and the near-surface endogenic flow id and the near-surface conductive omponent Fcnd computed represents the hare of the <u>convective component</u> icnv Fcnv = Ed – Fcnd			
value of the near-surface endogenic flow	Ī	Kalp	ointag
Fd and the near-surface conductive	-	Cho	Itag
component Fcnd computed represents the	-	Kurı	Jktad
share of the convective component	ŀ	Altu	ntag
ECUAL ECUAL EC		,	

The calculated surface heat flow of large

ault	ness	heat	Depth part of	Portion of мW	The part of kon-		
	flow, <i>L</i> мW/м 2 . сг.µµм	flow, F MW	F , <i>F dep</i> , мW	konduc- tiv <i>e</i> <i>F conda</i>	konvec- tive <i>Fconve</i>	vektive portion, %	
unka	103.027	707.84	323.37	25.46±4.1 4	297.86±4. 18	92	
argoc In	85.466	587.19	362.14	25.44±2.6 9	336.71±2. 7	93	
ear- ea	112.242	771.15	339.36	20.94±1.6 7	318.42±1. 67	94	
order one o atf.	f The ca	708.09	289.62 ed surfa	18.79±0.8 ace hea	270.86±0.	94	
	<u>ot lare</u>	je regi	onal fat	ilts of '	larim		
F	ault	Surface	Depth	Portion of	Fdepth, mV	V	
st re	ructu-	heat flow F, mW	conduc- tive part of F , calulated	konducti- ve, <i>F conda</i>	konvek- tive, <i>F</i> conve		

61.47

196.56

199.87

186.86

256.56

40

40

44

45

43

19.59

19.59

20.22

20.38

20.06

41..88 (68)

176..97 (90)

179..65 (90)

166.48 (89.1)

236.48 (92)

The set of geochemical samples on large seismoactive regional fault's trakcs of BRZ

см

w, г/т

/ t

СМ

TI, r/T

The concentration is g

Hg, r/T

element's concentration distribution into surface formations of Bargoozine regional fault

Geochemical indicators, associated with surface outgoing IR flow of large seismoactive

IS of BRZ	n	C m	В	Cu	Zn	Pb	As	Ge	Мо	Sn	Ag	Tl	Hg	Co	Cr	Ni	V
Tunka	8 8	X	42.	34.2	75.40	13.	9 11.6	1.2	1.98	2.6	0.2	0.9	0.1	16.1	81	68	68. 2
		±σ	2.0	1.32	1.12	1.3	1 1.62	0.4	1.35	0.9	0.2	1.0	0.1	1.3	1	1	1. 3
Bargoo-	7	X	c 14.3	25.9	112.1	17.	9 6.14	1.2	1.55	3.1	0.2	0.7	0.1	16.7	51	39	95
zin	5	±σ	1.1	1.18	1.05	1.0	3 1.33	0.3	1.25	1.0	0.1	0.4	0.1	1.0	1	1	1
Border	9	Х	20.6	22.8	69.65	12.	4 17.4	1.2	1.25	2.3	0.3	0.8	0.6	не	ОП	ределен	ы
platform	1	±σ	2.1	1.28	1.25	1.5	9 2.21	0.6	1.82	1.2	0.3	1.4	1.5				
Geotherm. field		X	20.3	23.9	88.65	18.	2 14.3	3.9	1.14	2.2	0.74	0.6	0.1	11.9	42	36	60. 3
Kucheger		±σ	1.1	1.33	1.19	1.1	1.61	1.7	1.09	1.1	1.5	0.4	0.2	1.1	1.1	1.2	1. 1
Fault	Fault						Indicators of geochemical specialization of faults								•		
High concer					ation, g / t According to di				to dispersion According to				geochemical association				
	Cmax			ζ.	Back- ground		9 elements F1/F2	15 elements, F1/F2		ts,	9 elements		15 elements		Ma sec	Main / secondary	
Tunka	B, Cu, Cr		B, Cu G T		Ge, B / Tl, Mo	B / Mo			Tl, Ag, Mo , B		Hg, As, Ag , Mo		A g, Mo / Hg, As, Tl				
Bargoozin			Zn, V		Zn, V		Ag, Cu / Pb, Tl	Ni, Pb	Ni, As / Pb, Mo		Tl, Cu, Ag,		Mo, As, Tl		Tl / Cu, Ag, As		
Border zone platform	ne of As, Hg			Hg Cu, Tl,		Cu, Zn / Tl, Mo	Mo Zn	Mo, As / Zn		Mo, Tl, Ag		Mo, Hg, As, Ag		Mo, Ag / Tl, Hg, As,			
Geothermal Kucheger	field		Ge, Ag		Ge, Ag		не расс- читано	Zn, V,	Zn, Pb / V, Co		не рассчит.		Hg, Ag, Mo, Ge		Hg, Mc	Hg, Ag, Ge / Mo	

 Π , geochim. flow = [*C comp :* (S · t)] ·10 6 = kg/km2 · year.

Surface ionization level of near ground air for Tunka fault track

Fault	ault geochim. flows, kg/km2 · year							F dep,
	As	Tl	Hg	Ag	Mo	Ge	M W T	M VV T
Tunka	3.252	0.226	0.020	0.089	0.189	не оп	707.84	323.37
Bargoo- zin	0.879	0.139	0.013	не оп	не оп	не оп	587.19	362.14
Border zone	1.671	0.229	0.037 0.055	0.018	0.139	не оп	708.09	289.62
Thermal zone Ku- cheger	21.44	0.413	0.021	0.479	не опр	7.267	74 Wт/м 2	9.553 MW

Geochemical flows of large seismoactive regional faults of Cordomorphous cloud above Tunka fault BRZ

Affected by lonosphere

Ionosphere Free

Ionospheric perturbations above large seismoactive fault, associated with Wenchuan Mw=8.0 earthquake on 12 May 2008 in Sichuan, China (after Xiao-Li Ding