Mineralization related to magmatism: on example of copper-porphyry deposits in Mongolia

Ochir Gerel & Bayaraa Batkhishig Mongolian University of Science & Technology, Dept. of Geology, Ulaanbaatar, Mongolia. E-mail:gerel@must.edu.mn

1 mm

Geological scheme for the eastern segment of the Central Asian Orogenic Belt (Yarmolyuk et al., 2011)

Porphyry deposits

Erdenet deposit Discovered and explored by E. Kominek, Czech Republic L. Myagmar, Mongolia, et al,

Reserves: 1.78 Gt @0.62% Cu 0.025% Mo

Annual production:

Ore: 25, 000 tons

Cu-Mo concentrate: 530, 000

tons

EXD 0

GEOLOGY AND MAGMATIC

Mogod Formation Volcanic (170-180 Ma) (Sotnikov et al., 1995) (203 Ma, Lamb, Cox, Porphyry Assessmention (235-243 Ma) **Erdenet Porphyry Complex** Mogod Formation Selenge Intrusive Complex (241-248 Ma) (Koval, Gerel, 1984, 1987)

Khanui Group (Permian) Subalkalic, high K, bimodal (277-283 Ma, Munkhtsengel, 2007)

October 22-26, 2012, Irkutsk

Gerel & Munkhtsengel, 2005

Geological map

Quartz-sericite alteration

October 22-26, 2012, Irkutsk

Erdenet Porphyry Association

Metaluminous and altered rocks peraluminous

Calc-alkaline I-type October 22-26, 2012, Medium to high potassic

Geochemistry

Enriched in LIL: K, Rb, Th depleted in HFS: Nb, Zr, Hf, Y, Ti and P

Alteration

Three principal types are developed:

- sericitic (quartz-sericite)
- intermediate argillic (chloritesericite)
- propyllitic (chlorite and epidotechlorite)
- The most common clay minerals: illite, smectite, montmorillonite, rarely kaolinite, also hematite and muscovite.
- Montmorillonite mainly associated with distribution of mafic dikes

Fluid inclusions

Three types of fluid inclusions are observed at room temperature :

- 1. Liquid rich inclusions L:V (70:30 90:10 volume %)
- 2. Vapor rich inclusions V:L (80:20 95:5 volume %)
- 3. Polyphase inclusions L:S:V (60:35:5-70:20:10 volume %)

Solid phase daughter minerals are halite and unknown crystal.

Higher T up to 360°C, lower about 170°C, dominant average 200-250°C Munkhtsengel, 2007

Results of SEM-CL study

Mineralization stages

Satellite image view of Oyu Tolgoi area

South Oyu Tolgoi

View to North and Central — Oyu

OT trend: long section

Measured and indicated resource of 1,390 Mt at 1.33 % Cu, 0.47 g/t Au, and an inferred resource of 2,200 Mt at 0.83 % Cu, 0.37 g/t Au (at 0.6% Cu equiv. cut-off)

Quartz monzodiorite (Lqmd)

Composition:

60% plagioclase 10% quartz, partly secondary 10% K-feldspar alteration intergrown with quartz 20% completely altered ferromagnesian minerals (chlorite, opaques)

Devonian Oyu Tolgoi porphyry Cu-Au system Trace element distribution in monzodiorite

Data from Ivanhoe Mines

October 22-26, 2012, Irkutsk

REE distribution

20

Rb versus Y+Nb diagrams

Oyu Tolgoi Geology mineralisation model

 Augite basalts below major thrust host late Devonian porphyry mineralisation

 Irregular porphyry's at centre of mineralising system

• Alteration extends up to carbonaceous siltstone below thrust

• Major thrust hosted in carbonaceous siltstone

• Basalts and sediments above thrust commonly overturned, exotic min.

• Biotite granodiorite intrudes overthrust sequence 10my younger than mineralisation

• All overlain unconformably by early carboniferous sediments, volcanics

Hanging wall

Foot wall

Carbonaceous siltstone

Augite basalt

Advanced argillic zone Cu-Au porphyry system

Biotite granodiorite

Quartz monzodiorite

October 22-26, 2012, Irkutsk

Veining

Southwest Oyu Tolgoi: high-grade Cu-Au mineralization in core

622-624m: 8.9g/tAu, 3.75% Cu

Hugo Dummet alteration and mineralization

Hugo Dummet North alteration and mineralization

Characteristics of the advanced argillic zone

- Andalusite, corundum, diaspore, residual quartz, alunite, aluminum phosphate-sulfate (APS)
- Minerals: zunyite, topaz, pyrophyllite, kaolinite, dickite, gypsum, fluorite
- Developed in augite basalt, dacitic ash flow and quartz monzodiorite, controlled by the augite basalt-dacitic tuff contact, and the most extensive AA is after augite basalt
- Cu minerals: (enargite, tennantite, bornite, chalcopyrite, chalcocite, covellite), but no significant gold in the AA zone
- O, H and S isotope study shows that the alunite is derived from magmatic condensate, without a significant meteoric component October 22-26, 2012, Irkutsk 27

Porphyry Cu-Au Shuteen deposit lithocap

Geological map of the Shuteen area

October 22-26

SHUTEEN COMPLEX

Late stocks and dikes

SHUTEEN PLUTON

Third Stage Bt granodiorite, granite

Second Stage Granodiorite, Hb-Bt granite

First stage Diorite, monzodiorite

(Batkhishig, 2003, 2006).

- Metaluminous
- Na₂O in granite is >3.2%
- Accessory titanite

Volcanic arc setting

ASI vs SiO₂ diagram after Chappel and White 1974 Ctober 22-26, 2012, Rb vs (Y+Nb) diagram after Le Pearce et al., 1984

Andesite and granitoids have similar

- Whole rock chemistry
- Initial Sr and Nd isotope ratios

Geochemistry of the Shuteen complex

Characteristics of adakite/Archean

high Al TTD*

- Silica over saturated
- High Al₂O₃>15%
- •High Sr >400ppm
- Low Y<18ppm
- •Yb <1.9ppm
- La/Yb >20
- Zr/Sm>50
- •Depleted in HREE
- High Sr/Y >40
- Low initial ⁸⁷Sr/⁸⁶Sr
- High initial ¹⁴³Nd/¹⁴⁴Nd

October 22-26, 2012, Irkutsk

At room temperature 4 types of fluid inclusions observed in rocks from the Shuteen Complex

October 22-26, 2012, Irkutsk

Homogenization T and salinity frequency diagrams (Batkhyshig, 2005)

Compositional type: A/CNK vs. SiO₂

Oxidation state: Fe₂O₃/ FeO vs.FeO

October 22-26, 2012, Irkutsk

Differentiation mechanism: K/Rb vs. SIO₂

K/Rb vs. SIO2

K/Rb

Metallogeny of granitoids with porphyry deposits

•Granitoids are calc-alkaline, medium to high K, metaluminous I type, altered porphyries are weakly to strongly peraluminous

•Granitoids are strongly oxidized (Oyu Tolgoi, Erdenet) to moderately oxidized (Shuteen Erdenet)

 Porphyries are unevolved (Oyu Tolgoi) or moderately evolved (Shuteen, Erdenet), rarely highly evolved (porphyry Cu-Mo)

 Granitoids are depleted in Nb, enriched in LILE, typical VAG, with adacitic signuture (High Sr/Y and La/Yb ratio, and low Y and Yb).

Hugo Dummet deposit: high grade Cu – Au ore

Thank you

October 22-26.

OTD918C(1124): 15% Cu, 1.4g/ť Au