

# СТИФЕЕВА Мария Владимировна

# U-РЬ ИЗОТОПНАЯ СИСТЕМАТИКА Ca-Fe ГРАНАТОВ КАК ИСТОЧНИК ИНФОРМАЦИИ О ВОЗРАСТЕ ЩЕЛОЧНЫХ, ЩЕЛОЧНО-УЛЬТРАОСНОВНЫХ КОМПЛЕКСОВ И ИЗВЕСТКОВЫХ СКАРНОВ

Специальность: 25.00.09 - геохимия, геохимические методы поисков полезных ископаемых

# АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата геолого-минералогических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте геологии и геохронологии докембрия Российской академии наук (ИГГД РАН, г. Санкт-Петербург).

| Научный руководитель:  | Котов Александр Борисович                                                                                                                                                  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | член-корр. РАН, доктор геологоминералогических наук, заведующий лабораторией изотопной геологии ИГГД РАН                                                                   |
| Официальные оппоненты: | Зайцев Анатолий Николаевич  Доктор геолого-минералогических наук, профессор кафедры минералогии Института наук о Земле Санкт-Петербургского государственного университета; |
|                        | Иванов Алексей Викторович  Доктор геолого-минералогических наук, профессор РАН, руководитель ЦКП «Геодинамика и геохронология» ИЗК СО РАН.                                 |
| Ведущая организация:   | Федеральное государственное бюджетное учреждение науки Институт геологии Карельского научного центра РАН (г. Петрозаводск)                                                 |

Защита диссертации состоится <u>19 апреля 2022 года в 14-00 часов</u> на заседании диссертационного совета Д 003.059.01 при Федеральном государственном бюджетном учреждении науки Институте геохимии им. А.П. Виноградова Сибирского отделения Российской академии наук (ФГБУН ИГХ СО РАН) по адресу: 664033, а/я 304, г. Иркутск, ул. Фаворского, 1а.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН Института геохимии им. А.П. Виноградова СО РАН (<a href="http://igc.irk.ru">http://igc.irk.ru</a>).

Автореферат разослан «9» марта 2022 г.

Учёный секретарь диссертационного совета,

кандидат геол.-мин. наук

Е.В. Канева

Отзывы на автореферат в 2-х экземплярах, заверенные печатью учреждения, просим направлять учёному секретарю совета к.г.-м.н. Каневой Е.В. по адресу: 664003, г. Иркутск, ул. Фаворского, 1а и в формате pdf на email: kaneva604@mail.ru.

#### Ввеление

## Актуальность исследований

Как известно, циркон, бадделеит, рутил, монацит и титанит являются надёжными минераламигеохронометрами для определения абсолютного возраста горных пород U-Pb методом. Однако для щелочных, щелочно-ультраосновных пород и высокотемпературных метасоматических пород их использование часто затруднено ввиду отсутствия этих минералов или их низкой степени сохранности. В связи с этим поиск новых минералов-геохронометров для датирования таких пород является важной и актуальной задачей современной геохронологии. В настоящей работе в качестве потенциальных U-Pb минералов-геохронометров рассматриваются широко распространенные в различных типах изверженных и метасоматических пород урансодержащие Ca-Fe гранаты.

**Цель** диссертации заключалась в выявлении возможностей и ограничений применения Са-Fe гранатов в качестве U-Pb минералов-геохронометров для определения возраста щелочных, щёлочно-ультраосновных пород и известковых скарнов.

#### Задачи исследований:

- 1. Провести комплексные исследования состава и строения Са-Fe гранатов из различных типов пород.
- 2. Разработать оптимальную методику предварительной подготовки Ca-Fe гранатов к проведению U-Pb (ID-TIMS) геохронологических исследований.
- 3.Выполнить U-Pb (ID-TIMS) геохронологические исследования гранатов из разновозрастных щелочных, щёлочно-ультраосновных пород и известковых скарнов, для которых имеются оценки возраста, полученные независимыми методами.

## Объекты исследований:

- 1. Гранаты из магматических пород щелочно-ультраосновных массивов крупнейших изверженных щелочных провинций (Кольская провинция, Маймеча-Котуйская, Восточно-Саянская, Западно-Алданская, Сангиленская, провинция Сьюпериор).
- 2. Гранаты из известковых скарнов (Дашкесанское железорудное месторождение, Карышская группа Cu-Mo-W месторождений (Туим-Карышский массив), Хову-Аксинское Ni-Co-As месторождение и железомагнезиальных флогопитоносных метасоматитов Алданского щита.

## Фактический материал.

Для решения поставленных задач были выполнены U-Pb (ID-TIMS) геохронологические исследования 49 образцов гранатов из 16 реперных магматических комплексов, использовано более 600 анализов гранатов и их минеральных включений на главные и более 100 анализов гранатов на редкие и редкоземельные элементы. Часть проб и образцов гранатов для проведения геохронологических и геохимических исследований любезно предоставлены: А.А. Арзамасцевым (ИГГД РАН), Н.В. Владыкиным (ИГХ СО РАН), В.В. Врублевским (НБ

ТГУ), Ю.Д. Гриценко (МГУ, музей им. Ферсмана), А.В. Никифоровым (ИГЕМ РАН), А.В. Самсоновым (ИГЕМ РАН), А.Р. Шахмурадяном (Университет Манитобы).

## Научная новизна работы состоит в том, что:

- 1. Впервые проведены комплексные (минералогические, геохимические, геохронологические) исследования Са-Fe гранатов из пород различного состава, происхождения и возраста.
- 2. Получены оценки возраста гранатов из щелочных и щёлочно-ультраосновных пород нескольких магматических провинций: Кольской, Маймеча-Котуйской, Восточно-Саянской, Западно-Алданской, Сангиленской, Сьюпериор.
- 4. Получены прямые оценки возраста формирования известковых скарнов Дашкесанского железорудного месторождения, Карышской группы Cu-Mo-W месторождений (Туим-Карышский массив) и Хову-Аксинского Ni-Co-As месторождения.
- 4. Получена «прямая» оценка возраста формирования железо-магнезиальных флогопитоносных метасоматитов Алданского щита.

**Практическая значимость работы**. Продемонстрирована возможность использования Ca-Fe гранатов в качестве U-Pb минералов-геохронометров для широкого спектра магматических и контактовометасоматических пород. Полученные результаты имеют принципиальное значение для изучения проблемы последовательности и продолжительности процессов магматизма и рудообразования.

#### Зашишаемые положения:

- 1. По данным U-Pb датирования Ca-Fe гранатов, щелочные и щёлочно-ультраосновные магматические комплексы Кольской провинции имеют возраст 373-377 млн лет, Маймеча-Котуйской провинции 247-250 млн лет, Восточно-Саянской провинции  $639\pm11$  млн лет, Западно-Алданской провинции  $131\pm1$  млн лет, Сангиленской провинции  $492\pm2$  млн лет и провинции Сьюпериор Канадской щита  $2715\pm4$  млн лет и  $1800\pm24$  млн лет.
- 2. U-Pb возраст Ca-Fe гранатов из рудоносных известковых скарнов Дашкесанского железорудного месторождения составляет 147±2 млн лет, Карышской группы Cu-Mo-W месторождений 476±3 млн лет, Хову-Аксинского Ni-Co-As месторождения 399±2 млн лет и, наконец, железо-магнезиальных флогопитоносных метасоматитов Алданского щита 1901±5 млн лет.
- 3. Полученные оценки U-Pb возрастов Ca-Fe гранатов из разновозрастных щелочных и щелочноультраосновных магматических пород, а также рудоносных известковых скарнов совпадают с оценками их возраста, полученными независимыми методами. Это позволяет рассматривать Ca-Fe гранаты как надежные U-Pb минералы-геохронометры, что обусловлено значительным содержанием в них урана, низкой долей обыкновенного свинца и, как правило, высокой устойчивостью их U-Pb изотопной системы в ходе проявления наложенных процессов.

Апробация результатов исследований. Основные результаты исследований были представлены на Всероссийской научно-практической молодёжной конференции "Современные исследования геологии" (Санкт-Петербург, 2016), XXVII и XXVIII Молодёжной научной школе-конференции, посвящённой памяти члена-корреспондента АН СССР К.О. Кратца и академика РАН Ф.П. Митрофанова (Апатиты, 2016; Санкт-Петербург, 2017), V Международной конференции молодых учёных и специалистов памяти академика А.П. Карпинского (Санкт-Петербург, 2017), VI Российской конференции по изотопной геохронологии (Санкт-Петербург, 2015), VII Российской конференции по изотопной геохронологии (Москва, 2018), Ежегодной международной конференции "Маgmatism of the Earth and related strategic metal deposits" (Saint-Petersburg, 2019), Международной конференции "The Goldschmidt Conference" (Barcelona, 2019), VI Российской конференции по проблемам геологии и геодинамики докембрия (Санкт-Петербург, 2019).

**Публикации.** По теме диссертации опубликовано 27 печатных работ, включая 6 статей в рецензируемых научных журналах и 21 тезисах докладов.

## Благодарности.

Автор выражает глубокую и искреннюю благодарность своему научному руководителю д.г.-м.н. члену-корреспонденту РАН Александру Борисовичу Котову за всестороннюю помощь и поддержку на всех этапах подготовки и написания диссертации. Автор искренне признателен к.г.-м.н. Екатерине Борисовне Сальниковой за терпение, поддержку и неоценимую помощь в проводимых исследованиях, подготовке и написании диссертации. За всестороннюю помощь автор выражает благодарность своим коллегам и наставникам, сотрудникам лаборатории изотопной геологии ИГГД РАН В.П. Ковачу, Ю.В. Плоткиной, Е.В. Толмачёвой, С.З. Яковлевой, О.В.Якубович. За помощь в подготовке минеральных фракций для проведения исследований автор признателен сотрудникам минералогической группы ИГГД РАН Л.А. Ивановой, Г.В. Платоновой и А.М. Федосеенко. За консультации и ценные рекомендации автор выражает благодарность П.Я. Азимову, А.А. Арзамасцеву, Ю.Д. Гриценко, В.В. Гуржию, А.В. Никифорову, И.М. Пейчевой, В.М. Саватенкову, А.Р. Шахмурадяну.

Исследования выполнены при финансовой поддержке РФФИ (проекты № 17-05-00912, 18-55-18011, 20-55-1807).

## Структура и объём диссертации.

Работа состоит из введения, 5 глав, заключения, списка литературы и приложений. Объём работы составляет 145 страниц, включая рисунки, таблицы и приложения. Список литературы содержит 126 наименований.

# Кристаллохимические особенности и геохимическая характеристика Са-Fе-гранатов

Гранаты - группа минералов класса силикатов и их аналогов с островной структурой кристаллической решётки. Они относятся к кубической сингонии (пространственная группа Ia3d). Общая структурная формула  $\{X_3\}[Y_2](Z_3)\phi_{12}$ , где додекаэдрическая позиция  $\{X\}=Ca$ , Na, Mn, Y, Mg, Fe<sup>2+</sup>; октаэдрическая позиция  $[Y]=Fe^{3+}$ , Fe<sup>2+</sup>, Al, Sn, Mn, Mg, Ti, Si, Cr, V, Sc, Zr, U<sup>6+</sup>, Sb, Te; тетраэдрическая позиция (Z)=Si, Al, As, V, Fe<sup>3+</sup>, Zn, Li, O, позиция  $\phi=O$ , (OH) или F (Grew et al., 2013).

Гранаты являются минералами переменного состава. Они образуются в широком интервале температур, давлений и химического состава минералообразующей среды. Наличие трёх крупнокатионных позиций в структуре способствует реализации различных вариантов изоморфных замещений, в том числе вхождению в структуру актиноидов и лантаноидов. Присутствие «равномерно распределённого» (структурно связанного) урана в различных по составу гранатах установлено с помощью метода треков осколков спонтанного и нейтронно-индуцированного деления (Шуколюков и др., 1970; Комаров и др., 1967). Изоморфное замещение кальция ураном в структуре гранатов носит гетеровалентный характер. Одновременно с вхождение урана в додэкаэдрическую позицию {X<sub>3</sub>}, в октаэдрическую [Y<sub>2</sub>] и тетраэдрическую (Z<sub>3</sub>) позиции входят элементы с пониженной валентностью (Rak et al., 2011). Результаты изучения искусственных соединений со структурой граната (Лавёров и др., 2010) показали, что максимальной ёмкостью в отношении актинидов ферриты со структурой гранатового типа обладают в том случае, когда тетраэдрическая позиция полностью занята Fe<sup>3+</sup>, а октаэдрическая - Zr (Лавёров и др., 2010). Согласно последней классификации (Grew et al., 2013), существуют две группы гранатов, химический состав которых частично удовлетворяет этим условиям - группа битиклеита и группа шорломита. Они характеризуются либо полным отсутствием (группа битиклеита), либо частичным дефицитом (группа шорломита) кремния в тетраэдрической позиции.

Благодаря устойчивости кристаллической структуры, гранаты успешно используются для определения термодинамических условий образования различных горных пород (Соболев, 1964). Гранаты пироп-альмандин-спессартинового ряда зарекомендовали себя в качестве надёжных Sm-Nd и Lu-Hf минералов-геохронометров для определения возраста метаморфических событий (Johnson et al., 2018; Duchêne et al. 1997; van Breemen and Hawkesworth, 1980; Griffin and Brueckner, 1980).

Первые исследования U-Pb системы в гранатах (Mezger et al., 1989; Burton and O'Nions, 1991; DeWolf et al., 1996) показали невозможность использования метаморфических гранатов альмандин-пиропового состава для получения геохронологической информации ввиду низкого содержания урана и наличия урансодержащих минеральных включений. В тоже время результаты изучения высокотитанистых андрадитов из лампрофиров (Barrie et al., 1990) продемонстрировали потенциальную возможность использования гранатов в качестве U-Pb минералов-геохронометров. Это послужило предпосылкой для продолжения геохронологических исследований гранатов.

**Методика исследований.** Для решения поставленных задач были выполнены U-Pb геохронологические исследования гранатов из щелочных, щёлочно-ультраосновных пород и известковых скарнов. Для всех гранатов проводилось определение состава главных и редких элементов, изучение морфологических особенностей и строения кристаллов.

Аналитические методики. Изучение морфологических особенностей и строения кристаллов граната проводилось с использованием оптических методов (оптический микроскоп Leica DNLP) и электронной микроскопии (сканирующий электронный микроскоп Hitachi S-3400N, СПбГУ «Геомодель»). Анализ состава гранатов и включений осуществлялся с помощью микрозондового анализа (сканирующий электронный микроскоп Hitachi S-3400N с энергодисперсионным спектрометром Oxford Instruments X-Max20, СПбГУ «Геомодель»). Определение содержаний редких и рассеянных элементов, а также U-Th-Pb геохронологические исследования выполнялись методом LA-ICP-MS (ICP-MS ELAN DRC Quadrupole, оснащённый системой лазерной абляции UP193FX New Wave, Геологический институт Болгарской академии наук; LA-ICP-MS Thermo Finnigan Element с лазером Nd-YAG Merchantek, Университет Манитобы (Канада).

Отбор проб гранатов для проведения U-Pb геохронологических исследований осуществлялся под бинокуляром с визуальным контролем гомогенности выбранных фрагментов (размер фрагментов не более 200 мкм). Проба очищалась от поверхностных загрязнений в ультразвуковой ванне и подвергалась предварительной кислотной обработке 3N - 8N HCl, согласно модифицированной методике (DeWolf et al., 1996). Разложение граната и последующее химическое выделение U и Pb проводилось в соответствии с модифицированными методиками (Krogh, 1973; Horwitz et al., 1992; Corfu and Andersen, 2002).

Определение изотопного состава Рb и U выполнено на многоколлекторном масс-спектрометре Triton TI в статическом или динамическом режимах (при помощи счётчика ионов). Точность определения U/Pb отношений и содержаний U и Pb составила 0.5%. Холостое загрязнение не превышало 15 пг для Pb и 1 пг для U. Обработка экспериментальных данных осуществлялась в программах "PbDat" (Ludwig, 1991) и "ISOPLOT" (Ludwig, 2012). При расчёте возрастов использованы общепринятые значения констант распада U (Steiger et al., 1977). Поправки на обычный Pb приведены в соответствии с модельными величинами (Stacey et al., 1975). Все ошибки приведены на уровне 2σ.

# Обоснование защищаемых положений

1. По данным U-Pb датирования Ca-Fe гранатов щелочные и щёлочно-ультраосновные магматические комплексы Кольской щелочной провинции имеют возраст 373-377 млн лет, Маймеча-Котуйской провинции — 247-250 млн лет, Восточно-Саянской провинции - 639±11 млн лет, Западно-Алданской провинции - 131±1 млн лет, Сангиленской провинции - 492±2 млн лет и провинции Сьюпериор Канадской щита - 2715±4 млн лет и 1800±24 млн лет, которые согласуются с имеющимися геохронологическими данными.

**Кольская щелочная провинция.** Изучены гранаты из пород фоидолитовой серии пяти щёлочноультраосновных массивов Кольской магматической провинции: Африканда, Ковдор, Вуориярви, Салмагора и Салланлатва. Для всех гранатов характерна тёмная окраска - от чёрной в крупных фрагментах до тёмнокоричневой на тонких сколах. Зёрна граната преимущественно изометричные, часто с хорошо различимыми элементами природной огранки. Состав гранатов из всех пяти массивов соответствует ряду андрадитшорломит-моримотоит (рис. 1а). Отмечаются примеси циркония (ZrO<sub>2</sub> не более 1.5 вес.%), натрия (Na<sub>2</sub>O не более 1.5 вес.%), магния (MgO до 2 вес.%) и ванадия (не более 0.5 вес.%). Гранаты из щелочных массивов Кольской провинции характеризуются высоким содержанием REE (279-1799 мкг/г) с тенденцией к обогащению MREE (рис. 2a).

*Массив Африканда*. Гранат входит в число акцессорных минералов практически всех щелочных пород массива Африканда (Chakhmouradian et al., 2004). Для геохронологических исследований использован гранат из кальцит-амфибол-пироксеновых пегматоидных пород. Геохронологические исследования проведены для двух навесок граната. Содержание U в них составляет 14.10 и 16.50 мкг/г, Pb - 0.98 и 1.42 мкг/г. Точки изотопного состава изученного граната располагаются на конкордии (рис. 3а), а его конкордантный возраст составляет 377±3 млн лет (СКВО = 0.22). Эта оценка возраста хорошо согласуется с оценками U-Th-Pb-возраста (LA-ICP-MS) перовскита из карбонатитов и пироксенитов массива Африканда (Арзамасцев и др., 2014; Reguir et al., 2010).

Ковдорский массив. Гранат является одним из главных минералов контактово-метасоматических апооливинитовых пород Ковдорского массива. Он характеризуется высоким содержанием урана (12.41 − 21.4 мкг/г) и низкой долей обыкновенного свинца (Pb<sub>c</sub>/Pb<sub>t</sub> = 0.07 - 0.08). Конкордантный возраст граната из апооливинитовых пород Ковдорского массива составляет 377±1 млн лет (СКВО = 1.4) (рис. 36). Полученная оценка возраста в пределах погрешности хорошо согласуется с U-Pb возрастом бадделеита из карбонатитов (378.5±0.2 млн лет; 380±3 млн лет), U-Pb (LA-ICP-MS) возрастом цирконолита (380±5 млн лет) и перовскита (382±3 млн лет) из пироксенитов Ковдорского массива (Amelin et al., 2002; Баянова и др., 1997; Wu et al., 2010; Арзамасцев и др., 2014).

*Массив Вуориярви*. Гранат входит в число породообразующих минералов ийолитов и ийолит-уртитов, а также в качестве акцессорных минералов встречается в пегматоидных пироксенитах этого массива. Геохронологические исследования проведены для двух микронавесок граната из пегматоидных пироксенитов. Содержание U в них достигает 6.92 и 15.76 мкг/г. Доля Pb<sub>c</sub> (Pb<sub>c</sub>/Pb<sub>t</sub>) - 0.49 и 0.46. Среднее значение возраста граната, рассчитанного по отношению <sup>206</sup>Pb/<sup>238</sup>U, составляет 373±2 млн лет (СКВО=0.01). Эта оценка возраста совпадает в пределах погрешности с U-Pb возрастом бадделеита из карбонатитов массива Вуориярви (377±4 млн лет (Вауапоva et al., 1997)).

*Массив Салмагора*. Гранат встречается в виде акцессорного минерала в ийолитах, мельтейгитах и турьяитах этого массива. Для геохронологических исследований использован гранат из крупнозернистых ийолитов. Он характеризуется незначительными вариациями содержания U (6.52 - 8.78 мкг/r). Доля нерадиогенного свинца  $(Pb_c/Pb_t)$  не превышает 0.33. На диаграмме с конкордией (рис. 3г) точки изотопного состава изученных микронавесок граната расположены на конкордии (конкордантный возраст -  $377\pm1$  млн лет, СКВО = 0.40).

*Массив Салланлатва*. В ийолитах и пегматоидных породах фоидолитовой серии массива Салланлатва гранат присутствует в качестве породообразующего минерала. Для геохронологических исследований использована микронавеска граната из мелкозернистого ийолита и две микронавески граната из пегматоидного ийолита. Гранат из мелкозернистого йолита характеризуется низким содержанием U - 5.78 мкг/г и содержит незначительное количество примесного обычного свинца ( $Pb_c/Pb_t$ ) = 0.24. Конкордантный возраст этого граната -  $375\pm2$  (СКВО = 0.01) (рис. 3д). Содержание U в гранатах из пегматоидного ийолита составляет 8.50 - 6.67 мкг/г, а доля  $Pb_c$  ( $Pb_c/Pb_t$  = 0.66 - 0.18). Для одной из микронавесок граната получена конкордантная оценка возраста  $378\pm3$  млн лет (СКВО = 0.08) (рис. 3д). Среднее значение возраста, рассчитанное по отношению

 $(^{206}\text{Pb}/^{238}\text{U})$  для двух микронавесок граната, составляет  $378\pm1$  млн лет и совпадает с оценкой возраста граната из мелкозернистого ийолита (рис. 3д).

Оценки U-Pb возраста гранатов из различных пород фоидолитовой серии пяти массивов Кольской магматической провинции согласуются между собой и находятся в интервале 373-377 млн лет (рис. 3), что соответствует возрастным границам главного этапа формирования Кольской щелочной провинции 380 - 360 млн лет (Kramm et al., 1994).

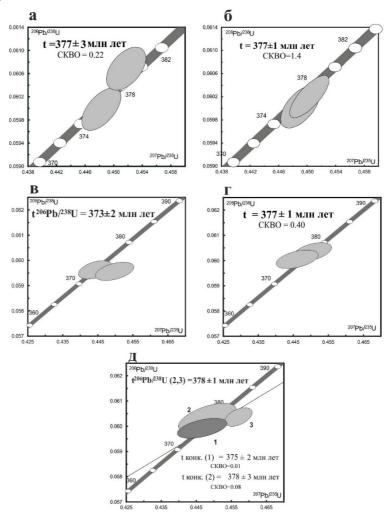



Рис. 3. Диаграммы с конкордией для гранатов из щелочных массивов Кольской щелочной провинции (а – массив Африканда, б – Ковдорский массив, в – массив Вуориярви, г – массив Салмагора, д – массив Салланлатва).

Маймеча-Котуйская щелочная провинция. Кальциевые гранаты являются распространёнными породообразующими и акцессорными минералами в породах, слагающих массивы Маймеча-Котуйской щелочной провинции. Изучены гранаты из контактово-реакционных зон мелилит-содержащих пород Гулинского массива и пегматоидных пород флогопит-пироксен-мелилитового состава из массива Одихинча. Их состав соответствует ряду андрадит-шорломит-моримотоит (рис. 1а), в качестве примесей присутствуют гроссуляровый, голдманитовый и кальдеритовый компоненты. Данные гранаты характеризуются высокими содержаниями REE (Гулинский массив: 255-483 мкг/г, массив Одихинча: 780-939 мкг/г) с обогащением LREE и MREE (рис. 2а). Отличительной особенностью распределения редкоземельных элементов в гранатах щелочных пород Маймеча-Котуйской провинции является резкое обеднение HREE.

*Гулинский массив*. Содержание U в гранате из мелилит-содержащих пород Гулинского массива достигает 7 мкг/г, а отношение  $Pb_c/Pb_t$  не превышает 0.32. Гранат характеризуется незначительной возрастной дискордантностью (рис.4; № 1, 2). Его возраст по отношению  $^{206}Pb/^{238}U$  составляет 247±6 млн лет (СКВО = 1.3) и в пределах погрешности согласуется с возрастом бадделеита из карбонатитов Гулинского массива - 250±0.3 млн лет (Като et al., 2003).

Массив Одихинча. Гранат из пегматоидных пород флогопит-пироксен-мелилитового состава массива Одихинча имеет сравнительно высокие содержания U (13.64-16.02 мкг/г); доля обыкновенного свинца ( $Pb_c/Pb_t$ ) - 0.08 и 0.14. Для него получена конкордантная оценка возраста 250 $\pm$ 1 млн лет (CKBO = 0.77)

Оценки возраста гранатов из пород щелочной серии массива Одихинча и Гулинского массива, согласуются между собой и совпадают с U-Pb возрастом бадделеита Гулинского массива -  $250\pm0.3$  млн лет (Като et al., 2003).

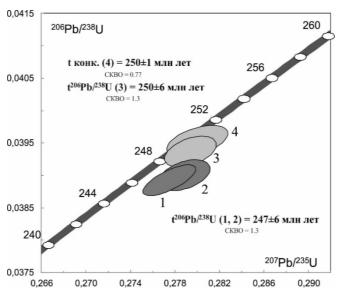



Рис. 4. Диаграмма с конкордией для гранатов из щелочных массивов Маймеча-Котуйской щелочной провинции  $(1, 2 - \Gamma y$ линский массив; 3, 4 - массив Одихинча).

Восточно-Саянская щелочная провинция. Белозиминский (Нижне-Саянский) массив щёлочноультраосновных пород и карбонатитов вмещает крупнейшее редкометальное месторождение Восточно-Саянской провинции. Кальциевые гранаты входят в число породообразующих минералов щелочных пород этого массива. Для U-Pb геохронологических исследований использован гранат из крупнозернистых карбонатсодержащих ийолитов. По химическому составу он соответствует изоморфному ряду андрадит шорломит – моримотоит (рис. 1а). Также в его составе присутствуют кимцеитовый (до 1.5%), кальдеритовый (до 1.3%), гольдманитовый (до 1.6%) и гроссуляровый (до 10%) компоненты. Отмечается зональность зёрен граната, выраженная в уменьшении содержания титана от центра к периферии. Гранат обогащен REE. Характерно уменьшение их содержаний от внутренних зон (1467 мкг/г) к краевым зонам (995 мкг/г). Графики распределения REE пологие с незначительным обогащением MREE и идентичны для всех зон кристаллов граната (рис. 2а).

Изученный гранат характеризуется высоким содержанием U (38.8-46.4 мкг/г), низкой долей обыкновенного Pb (Pbc/Pbt = 0.01-0.20) и незначительной дискордантностью (1.4-4.0%) (рис. 5). Среднее значение возраста ( $^{207}$ Pb/ $^{206}$ Pb) граната составляет  $645\pm6$  млн лет (СКВО = 0.41). Эта оценка возраста совпадает

с U-Pb возрастом циркона (643±4 млн лет) из нефелиновых сиенитов (Ярмолюк и др., 2005) и Ar-Ar возрастом флогопита (645±6 млн лет) из анкеритовых карбонатитов Белозиминского массива (Doroshkevich et al., 2016).

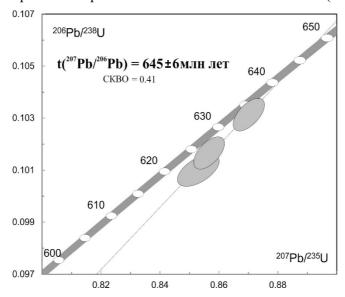



Рис. 5. Диаграмма с конкордией для граната из крупнозернистых карбонатсодержащих ийолитов Белозиминского массива.

Западно-Алданская щелочная провинция. Мурунский массив щелочных пород и карбонатитов является крупнейшим массивом Западно-Алданской провинции калиевых щелочных пород. Для геохронологических исследований использованы гранаты из кальсилитовых ийолитов и пироксенмикроклиновых пегматитов с кальсилитом этого массива.

Состав граната из кальсилитовых ийолитов соответствует ряду андрадит-моримотоит-шорломит с преобладанием андрадитового компонента (48.4-73.4%) (рис. 1а). В качестве второстепенных компонентов присутствуют кимцеитовый (до 3.51%) и голдманитовый (до 1.65%) миналы. В гранате обнаружены редкие включения сульфидов (пирит, халькопирит), апатита и карбонатных минералов. Содержание REE в гранате сравнительно невысокое (437-580 мкг/г). Наблюдается резкое обеднение LREE ([La/Sm] $_{\rm N}$ = 0.07-0.09), ([Gd/Yb] $_{\rm N}$ = 1.44-1.60) (рис.2a).

Состав граната из пироксен-микроклиновых пегматитов также отвечает ряду андрадит-моримотоит-шорломит. От граната из кальсилитовых ийолитов он отличается более высоким содержанием андрадитового компонента (58.07-81.83%) (рис. 1a) и характеризуется более высоким содержанием REE (782-1447 мкг/г) и незначительным обеднением LREE ( $[La/Sm]_N=0.11-0.14$ , ( $[Gd/Yb]_N=2.04-3.81$ ). Включения в гранате представлены мелкими зернами сульфидов.

Гранат из ийолитов характеризуется высоким содержанием урана (45.59-62.26 мкг/г) и высокой долей обыкновенного свинца (Pbc/Pbt = 0.50-0.55). Гранат из пегматитов содержит меньше урана (4.84-15.85 мкг/г), но в нем также отмечается высокое содержание обыкновенного свинца (до 42%), скорее всего, обусловлено присутствием захваченных в ходе его кристаллизации включений сульфидов. Для корректировки полученных изотопных данных (рис. 6) были введены поправки на изотопный состав свинца галенитов из различных пород Мурунского массива (Владыкин и др., 1995). В результате для граната из кальсилитовых ийолитов по нижнему пересечению дискордии с конкордией получена оценка возраста 130±1 млн лет (СКВО=1.03), а для граната из

пироксен-микроклинового пегматита - 131±1 млн лет (СКВО=1.7) (рис. 6). Они в пределах погрешности согласуются с оценками Ar-Ar возраста (113 - 133 млн лет) для токкоита, тинаксита, франкаменита и микроклина из чароитсодержащих пород Мурунского массива (Иванов и др., 2018).



Рис. 6. Диаграммы с конкордией для граната из щелочных пород Мурунского массива (а – кальсилитовые ийолиты, б – пироксен-микроклиновые пегматиты). Примечание: \* - точки изотопного состава без корректировки на изотопный состав свинца галенитов.

Сангиленская щелочная провинция. В пределах Сангиленской (Тувино-Монгольской) щелочной провинции выделяется несколько этапов щелочного магматизма. С одним из них связано формирование Чикского массива, сложенного ийолит-уртитами, ийолитами и мельтейгитами. Гранат является распространённым минералом ийолитов. Его содержание в породах варьирует в пределах 5-10%. Состав граната соответствует ряду андрадит-моримотоит-шорломит, в качестве примеси присутствует гроссуляровый минал (7-19%) (рис. 1а). Содержания андрадитового компонента уменьшается от центральных частей к краям зерен. В гранате присутствуют редкие включения магнетита, титанита и графита. Он характеризуются высоким содержанием REE (747-793 мкг/г), обеднением LREE ([La/Sm]<sub>N</sub> = 0.06-0.07) и обогащением HREE ([Gd/Yb]<sub>N</sub> = 0.69-0.79) (рис. 2а).

Гранат из ийолитов Чикского массива характеризуется сравнительно высокими содержаниями урана (14.50-16.40 мкг/г) и низкой долей обыкновенного свинца (Pbc/Pbt = 0.07-0.1). Его конкордантный возраст (рис. 7) составляет 492 $\pm 2$  млн лет (СКВО=0.01. вероятность - 92%) и совпадает с Sm-Nd изохронным возрастом, определённым для апатита и граната из этой же пробы -  $489\pm 9$  млн лет (СКВО=0.86) (Сальникова и др., 2018).

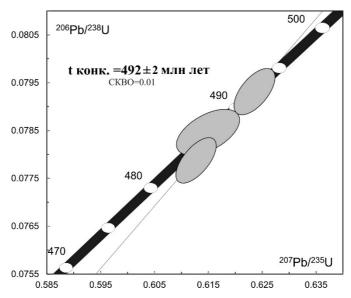



Рис. 7. Диаграмма с конкордией для граната из ийолита Чикского массива.

**Провинция Сьюпериор.** В провинции Сьюпериор (Канадский щит) изучены массивы Эден Лейк и Синдер Лейк. Их образование связано с различными этапами постколлизионного щелочного магматизма, проявленного в данном регионе.

*Массив Синдер Лейк* (зеленокаменный пояс Оксфорд-Лейк – Кни-Лейк) сложен главным образом сиенитами, карбонатитами и лампрофирами (Chakhmouradian et al., 2008a). Гранат является типичным акцессорным минералом сиенитовых пород. Для проведения геохронологических исследований использован гранат из пегматоидного сиенита. Его состав соответствует андрадиту (60.01-62.14%) с присутствием шорломитового (14.32-14.88%), моримотоитового (17.37-19.65%), кимцеитового (0.73-0.88%) и кальдеритового (1.29-1.41%) компонентов (рис. 1a). Он характеризуется высоким содержанием  $\Sigma$ REE ( $1800-4000 \, \text{мкг/r}$ ) с обогащением MREE ( $(\text{Sm/La})_N = 11.65-13.34$ ) (рис. 2a).

Гранат из пегматоидного сиенита характеризуется высоким содержанием U (6.73-13.63~мкг/г) и низкой долей обыкновенного свинца (Pbc/Pbt < 0.12). Точки его изотопного состава образуют дискордию, верхнее пересечение которой с конкордией соответствует возрасту  $2715 \pm 4~\text{млн}$  лет (нижнее пересечение составляет  $120 \pm 49~\text{млн}$  лет, CKBO = 1.17) (рис. 8). Полученные данные хорошо согласуются с возрастом цирконов из монцогранитов ( $2721\pm16~\text{млн}$  лет (Kressall et al., 2010)) и вишневитовых сиенитов ( $2705\pm2~\text{млн}$  лет; Chakhmouradian et al., 2008a) рассматриваемого массива.

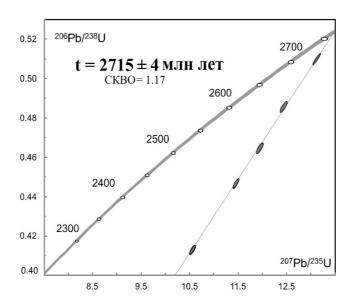



Рис. 8. Диаграмма с конкордией для граната из пегматоидного сиенита массива Синдер Лейк.

*Массив Эден Лейк* (Транс-Гудзонский ороген) сложен различными по составу сиенитами и карбонатными породами (Chakhmouradian et al., 2008b; Mumin, 2002). Гранат является продуктом контактовометасоматических процессов в реакционных зонах между щелочными и карбонатными породами. Состав граната соответствует андрадиту с примесью спессартинового (до 1.52%) и альмандинового (менее 0.5%) компонентов (рис. 1a). Распределение REE в пределах зёрен граната неоднородное. Центральные зоны зерен характеризуются более высокими содержаниями REE (1406-1849 мкг/r) с обогащением HREE ( $(Gd/Yb)_N = 0.52-0.90$ ). Краевые части зёрен значительно обеднены REE (557-855 мкг/r) и характеризуются пониженным содержанием HREE ( $(Gd/Yb)_N = 0.97-3.99$ ) и большим содержанием LREE (рис. 2a).

Гранат из массива Эден Лейк характеризуется сравнительно высоким содержанием U (4.08-5.09 мкг/г) и низкой долей обыкновенного свинца (Pbc/Pbt = 0.03-0.37). Точки его изотопного состава располагаются на дискордии, верхнее пересечение которой с конкордией соответствует возрасту  $1800\pm24$  млн лет, а нижнее -  $816\pm450$  млн лет (СКВО = 0.45) (рис. 9). Эта оценка возраста в пределах погрешности согласуется с возрастом циркона из карбонатитов массива Эден Лейк (Шахмурадян А.Р., неопубликованные данные).

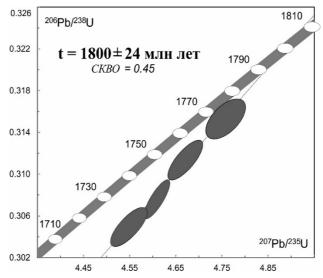



Рис. 9. Диаграмма с конкордией для гранатов из контактово-реакционных пород массива Эден Лейк.

2. U-Pb возраст Ca-Fe гранатов из рудоносных известковых скарнов Дашкесанского железорудного месторождения составляет 147±2 млн лет, Карышской группы Cu-Mo-W месторождений - 476±3 млн лет, Хову-Аксинского Ni-Co-As месторождения - 399±2 млн лет и, наконец, железо-магнезиальных флогопитоносных метасоматитов Алданского щита - 1901±5 млн лет, что соответствует имеющимся представлениям об их возрасте.

**Скарны** Дашкесанского железорудного месторождения. Гранат является породообразующим минералом рудоносных известковых скарнов Дашкесанского месторождения. Его химический состав соответствует ряду андрадит-гроссуляр, с преобладающим количеством андрадитового компонента (60-86 %); в незначительных количествах присутствуют спессартин (2-3 %), моримотоит (0.1-4.0 %), хатчеонит (0.1-3.4 %) и альмандин (0.1-3.8 %) (рис. 16). Содержание REE в гранате изменяется в пределах 151-366 мкг/г. Наблюдается уменьшение содержания элементов данной группы от центра к периферии зёрен. Характерно обогащение MREE ([La/Sm]<sub>N</sub>= 0.12-0.21) и значительное обеднение HREE ([Gd/Yb]<sub>N</sub> = 2.24-19.35) (рис. 26).

Изученный гранат характеризуются сравнительно высокими содержаниями U (8.16-8.47 мкг/г), низким содержанием Pb (0.24-0.29 мкг/г) и низкой долей обыкновенного Pb (Pb<sub>c</sub>/Pb<sub>t</sub> = 0.01-0.17). Две точки изотопного состава граната располагаются на конкордии (конкордантный возраст -  $147\pm2$  млн лет, СКВО=0.87, вероятность конкордатности 0.35) (рис. 10). Одна из точек изотопного состава находится несколько правее конкордии (рис. 10). Среднее значение возраста ( $^{206}$ Pb/ $^{238}$ U), рассчитанное для трех проанализированных микронавесок граната, составляет  $147\pm3$  млн лет (СКВО=4.5).

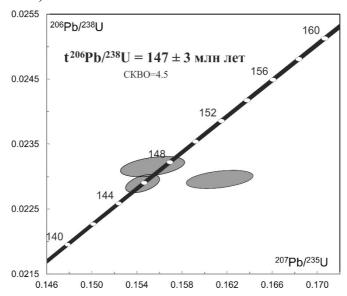



Рис. 10. Диаграмма с конкордией для граната из скарнов Дашкесанского железорудного месторождения.

Для граната из скарнов месторождения Дашкесан также были проведены U-Th-Pb (LA-ICP-MS) геохронологические исследования. Полученная оценка возраста (143±5 млн лет) в пределах погрешности совпадает с результатами датирования U-Pb методом (ID-TIMS).

Возраст граната из скарнов Дашкесанского месторождения (147±2 млн лет) согласуется с позднеюрским возрастом полифазного Дашкесанского магматического комплекса (Керимов и др., 2009; Мустафаев, 2007;

Садыхов, 2019) и свидетельствует о формировании железорудной ассоциации месторождения на рубеже юрского и мелового этапа эндогенной активности региона.

Скарны Карышской группы Сu-Мo-W месторождений (Туим-Карышский массив). На контакте Туим-Карышского массива гранодиоритов и вмещающих его метаморфизованных карбонатсодержащих пород локализованы известковые рудоносные скарны, с которыми связана Карышская группа Сu-Mo-W месторождений. Химический состав граната этих скарнов соответствует андрадиту (93-97%) с незначительным количеством гроссулярового компонента (не более 5%) (рис. 16). Содержание REE не превышает 150 мкг/г. Гранат характеризуются низким содержанием HREE, значительным обогащением LREE ([La/Sm]<sub>N</sub> = 22.3-60.9) (рис. 26), высоким содержанием U (12.55-41.31 мкг/г) и низкой долей обыкновенного свинца (Pb<sub>c</sub>/Pb<sub>tot</sub> = 0.08-0.12). Для него получена конкордантная оценка возраста 478±4 млн лет (СКВО=0.62). Среднее значение возраста (<sup>207</sup>Pb/<sup>206</sup>Pb) граната всех проанализированных микронавесок составляет 476±4 млн лет (СКВО=0.38).

Полученные оценки возраста образования скарнов хорошо согласуются с U-Pb (ID-TIMS) возрастом циркона (470±4 млн лет) из кварцевого диорита (Руднев и др., 2002) и U-Th-Pb (LA-ICP-MS) возрастом циркона (477±5 млн лет) из гранодиоритов Туим-Карышского массива (De Grave J. et al., 2011).

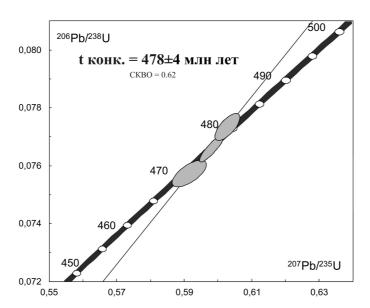



Рис. 11. Диаграмма с конкордией для гранатов из скарнов Туим-Карышского массива.

Скарны Хову-Аксинского Ni-Co-As месторождения. Хову-Аксинское Ni-Co-As гидротермальное месторождение входит в состав Алтае-Саянской кобальтовой металлогенической провинции. Образование контактово-метасоматических пород связано с многоэтапным магматизмом, широко проявленным в данном регионе в течение раннего и среднего палеозоя. Гранат является распространённым породообразующим минералом скарновых пород Хову-Аксинского месторождения. Состав граната отвечает ряду андрадитгроссуляр с преобладающим количеством андрадитового компонента (52-79%) (рис. 16). В значительно меньших количествах присутствуют шорломитовый, моримотоитовый, альмандиновый и спессартиновый компоненты (не более 4%). Для граната характерно обеднение LREE ([La/Sm]<sub>N</sub> = 0.01-0.02) и обогащение MREE ([Gd/Yb]<sub>N</sub> = 1.32-6.56) (рис. 26).

Содержание U в гранате изменяется в пределах 10.76-29.5 мкг/г. Доля обыкновенного свинца (Pb<sub>c</sub>/Pb<sub>tot</sub>) составляет 0.07-0.42. На диаграмме с конкордией (рис. 12) точки изотопного состава граната располагаются на

дискордии, нижнее пересечение которой с конкордией соответствует возрасту 399±2 млн лет (СКВО = 0.082). Эта оценка возраста незначительно древнее Ar-Ar возраста флогопита (383±5 млн лет) из скарнов Хову-Аксинского месторождения.

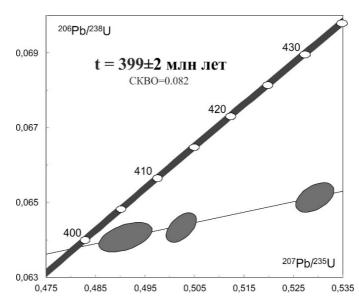



Рис. 12. Диаграмма с конкордией для граната из скарнов Хову-Аксинского месторождения.

Железо-магнезиальные флогопитоносные метасоматиты Алданского щита приурочены к карбонатсодержащим горизонатам фёдоровской толщи алданского гранулито-гнейсового мегакомплекса. По химическому составу гранат из железо-магнезиальных флогопитоносных метасоматитов Леглиерской группы месторождений соответствует андрадиту (75-90%) с постоянным присутствием альмандина, хатчеонита, гроссуляра и Мg-моримотоита (рис. 16). Он характеризуется высоким содержанием REE (3389-3785 мкг/г), обогащен HREE ([Gd/Yb]<sub>N</sub> = 0.47-0.49), обеднен LREE ([La/Yb]<sub>N</sub> = 0.06-0.07) и обладает отчётливо выраженной отрицательной европиевой аномалией (Eu/Eu\* = 0.43) (рис. 26). Содержание U в гранате достигает 58 мкг/г, а доля обыкновенного свинца не превышает 0.2 нг. Верхнее пересечение дискордии с конкордией, рассчитанной для трех точек изотопного состава граната, составляет 1901±5 млн лет (СКВО = 0.46) (рис. 13). Эта оценка возраста хорошо согласуется с U-Pb (ID-TIMS) возрастом циркона из Иджекского массива чарнокитов - 1916±10 млн лет (Бибикова и др., 1986) и полевошпатовых метасоматитов Тыркандинской зоны разрывных нарушений (1919±4 млн; Сальникова и др., 2006), образование которых связано с завершающими этапами раннепротерозойской эндогенной активности Алданского щита.

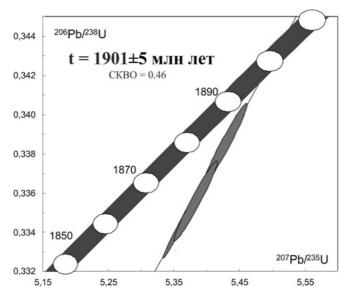



Рис. 13. Диаграмма с конкордией для граната из железо-магнезиальных флогопитоносных метасоматитов Алданского щита.

3. Полученные оценки U-Pb возрастов Ca-Fe гранатов из разновозрастных щелочных и щелочноультраосновных магматических пород, а также рудоносных известковых скарнов совпадают с оценками их возраста, полученными независимыми методами. Это позволяет рассматривать Ca-Fe гранаты как надежные U-Pb минералы-геохронометры, что обусловлено значительным содержанием в них урана, низкой долей обыкновенного свинца и, как правило, высокой устойчивостью их U-Pb изотопной системы в ходе проявления наложенных процессов.

Проведённые минералогические, геохимические и геохронологические U-Pb (ID-TIMS) исследования Са-Fe гранатов из пород щёлочно-ультраосновного состава и высокотемпературных метасоматитов различного возраста свидетельствуют об их высоком потенциале для использования в качестве минералов-геохронометров. Содержание урана в изученных гранатах изменяется в пределах 4-62 мкг/г, а его распределение в пределах отдельных зёрен варьирует в узком диапазоне. Изучение строения кристаллов гранатов с использованием оптических методов и электронной микроскопии указывают на отсутствие уран содержащих включений. Концентрация Рb в изученных образцах составляет 0.23-20.1 мкг/г, при этом они характеризуются незначительной долей обыкновенного свинца, как правило, не превышающей 10%. Следовательно, в большинстве случаев не возникает необходимости во внесении дополнительных поправок на первичный состав захваченного обыкновенного свинца. Эти характеристики позволяют определять U/Pb отношения Са-Feгранатов с точностью, сопоставимой с точностью определения изотопного состава традиционных U-Pb минералов-геохронометров (циркон, титанит, монацит, бадделеит).

По результатам U-Pb геохронологических исследований Са-Fe-гранатов из щёлочно-ультраосновных пород и высокотемпературных метасоматитов, в большинстве случаев получены конкордантные или субконкордантные воспроизводящиеся значения возрастов, которые хорошо согласуются с независимыми оценками возрастов, полученных U-Pb методом по циркону, титаниту, U-Th-Pb методом по перовскиту, Sm-Nd изохронному возрасту, рассчитанному для апатита и граната и Ar-Ar методом по слюдам. Таким образом, можно полагать, что состояние кристаллической решетки гранатов и форма нахождения в ней Pb и U препятствуют миграции этих элементов из гранатов в ходе наложенных процессов.

Благодаря своим кристаллохимическим свойствам, замкнутости U-Pb системы и широкому распространению в качестве породообразующих и акцессорных минералов в различных типах пород, Ca-Fe гранаты могут служить надёжным источником геохронологической информации.

#### Заключение

В диссертационной работе представлены результаты минералогических, геохимических и геохронологических U-Pb (ID-TIMS) исследований Са-Fe гранатов из щёлочно-ультраосновных пород и высокотемпературных метасоматитов. Гранаты из щёлочно-ультраосновных пород по составу соответствуют ряду андрадит - шорломит - моримотоит. Они характеризуются высоким содержанием некогерентных элементов, включая REE (405-2896 мкг/г). Отличительной особенностью распределения REE в изученных гранатах из щелочных и щёлочно-ультраосновных пород является отчётливо выраженным максимумом для группы MREE. В пределах отдельных зёрен гранатов содержание REE изменяется в узком диапазоне и не зависит от вариаций количества главных элементов. Состав гранатов из высокотемпературных метасоматических пород соответствует ряду андрадит-гроссуляр с постоянным присутствием Ті-содержащих компонентов. Эти гранаты также демонстрируют высокий уровень накопления REE (104-3538 мкг/г). В пределах зёрен прослеживается отрицательная корреляция между REE и Al.

Установлено, что присутствие урана в этих гранатах не связано с урансодержащими включениями. Эмпирическим путём подобран оптимальный режим обработки минерала перед проведением U-Pb (ID-TIMS) геохронологических исследований. Продемонстрирована необходимость комплексного изучения состава и строения гранатов для корректной интерпретации полученных результатов.

Проведены U-Pb геохронологические исследования гранатов из щелочных и щёлочно-ультраосновных пород ряда крупнейших магматических провинций: Кольская провинция, Маймеча-Котуйская, Восточно-Саянская, Западно-Алданская, Сангиленская, Сьюпериор. Полученные данные согласуются с независимыми оценками возраста по другим минералам.

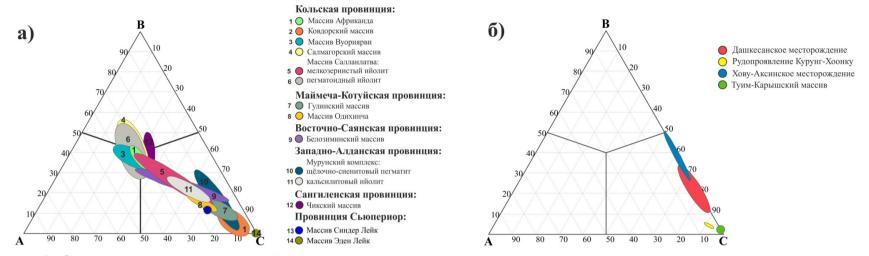
Результаты изучения Са-Fе-гранатов из скарновых пород (Дашкесанское железорудное месторождение, Карышской группы Си-Мо-W месторождений (Туим-Карышский массив), Хову-Аксинского Ni-Co-As месторождения и железо-магнезиальных флогопитоносных метасоматитов Алданского щита) также демонстрируют возможность использования U-Pb системы Са-Fe-гранатов для получения оценок возраста скарноообразования и сопутствующего оруденения.

Полученные результаты свидетельствуют о большом потенциале Ca-Fe-гранатов в качестве U-Pb минералов-геохронометров для различных пород.

# Список работ по теме диссертации:

Статьи в рецензируемых журналах.

- 1. Сальникова Е.Б., **Стифеева М.В.**, Шахмурадян А.Р., Глебовицкий В.А., Регир Е.П. U-Рьсистематика шорломита из кальцит-амфибол-пироксеновых пегматитов массива Африканда (Кольский полуостров) // ДАН. 2018. Т. 478. № 4. С. 443-446.
- 2. Сальникова Е.Б., **Стифеева М.В.**, Никифоров А.В., Ярмолюк В.В., Котов А.Б., Анисимова И.В., Сугоракова А.М., Врублевский В.В. Гранаты ряда надрадит-моримотоит потенциальные


- минералы-геохронометры для U-Pb датирования ультраосновных щелочных пород // Докл. АН. 2018. Т. 480. № 5. С. 583-586.
- 3. Salnikova E.B., Chakmouradian A.R., **Stifeeva M.V.**, Reguir E.P., Kotov A.B., Gritsenko Yu.D., Nikiforov A.V. Calcic garnets as a geochronological and petrogenetic tool applicable to a wide variety of rocks // Lithos. 2019. V. 338. P. 141-154.
- 4. **Стифеева М.В.**, Сальникова Е.Б., Самсонов А.В., Котов А.Б., Гриценко Ю.В. U-Pb возраст граната из скарнов Дашкесанского месторождения (Малый Кавказ) // Докл. АН. 2019. Т. 487. № 5. С. 554-557.
- 5. **Стифеева М.В.**, Сальникова Е.Б., Арзамасцев А.А., Котов А.Б., Гроздев В.Ю. Кальциевые гранаты как источник информации о возрасте щелочно-ультраосновных интрузий Кольской магматической провинции // Петрология. 2020. Т. 28. № 1. С. 72-84.
- 6. Reguir E.P., Salnikova E.B., Yang P., Chakmouradian A.R., **Stifeeva M.V.**, Rass I.T., Kotov A.B. U-Pb geochronology of calcite carbonatites and jacupirangite from the Guli alkaline complex, Polar Siberia, Russia // Mineralogical Magazine. 2021. P. 1-15.

# Статьи в тематических сборниках, тезисах совещаний и конференций.

- 1. Chakhmouradian A.R., Salnikova E.B., Yakovleva S.Z., Kressall R.D., Bohm C.O., **Stifeeva M.V.**, Plotkina Yu.V. Timing of carbonatite emplacement at the Cinder Lake alkaline intrusive complex: U-Pb ID-TIMS data from andradite // Материалы VI Российской конференции по изотопной геохронологии (2-5 июня 2015 г., Санкт-Петербург, ИГГД РАН). Санкт-Петербург. 2015. С. 350-351.
- 2. Стифеева М.В., Сальникова Е.Б., Шахмурадян А.Р. U-Рb датирование гранатов подгруппы уграндитов из щелочного интрузивного комплекса Синдер Лейк (западная часть кратона Сьюпериор, Канадский щит) // Материалы всероссийской научно-практической молодёжной конференции "Современные исследования в геологии" (25-27 марта 2016 г., Санкт-Петербургский Государственный Университет). Санкт-Петербург. 2016. С. 40-41.
- 3. **Stifeeva M.V.**, Salnikova E.B., Chakmouradian A.R. U-Pb study of ugrandites first results and perspectives // Proceedings of the conference "8th international Siberian early career geoscientists conference" (13-24 June 2016, Novosibirsk, Russia). IGM SB RAS, IPPG SB RAS, NSU: Novosibirsk. 2016. P. 119.
- 4. **Стифеева М.В.**, Сальникова Е.Б., Шахмурадян А.Р. U-Рb датирование шорломита из щелочного интрузивного комплекса Африканда (Кольская щелочная провинция) // Материалы XXVII молодёжной научной школы-конференции, посвящённой памяти члена-корреспондента АН СССР К.О. Кратца и академика РАН Ф.П. Митрофанова (3-7 октября 2016 г., Апатиты, ГИ КНЦ РАН). Апатиты. 2016. С. 75.
- 5. **Стифеева М.В.**, Сальникова Е.Б. U-Рb изотопная систематика гранатов из скарнов месторождения Дашкесан (Азербайджан) // Материалы XXVIII Молодёжной научной конференции памяти К.О. Кратца "Актуальные проблемы геологии, геофизики и геоэкологии" (2 7 октября 2017 г., Санкт-Петербург). Санкт-Петербург. 2017. С. 156-157.
- 6. **Стифеева М.В.**, Сальникова Е.Б., Котов А.Б., Шахмурадян А.Р., Никифоров А.В. U-Рь систематика кальциевых гранатов как источник информации о возрасте карбонатитов (на примере массивов Африканда и Белая Зима) // Материалы V Международной конференции молодых учёных и специалистов памяти академика А.П. Карпинского (28 февраля 3 марта 2017 г., Санкт-Петербург). Санкт-Петербург. 2017. С. 497-498.
- 7. Salnikova E., Chakmouradian A., **Stifeeva M.**, Reguir E., Nikiforov A. Calcic Garnets as a Promising U-Pb Geochronometers // The Goldschmidt Conference 2017. P. 3479.

- 8. Сальникова Е.Б., **Стифеева М.В.**, Котов А.Б., Анисимова И.В., Шахмурадян А.Р., Гриценко Ю.Д. U-Рb систематика гранатов как источник геохронологической информации // Материалы VII Российской конференции по изотопной геохронологии (5-7 июня 2018г., Москва, ИГЕМ РАН). Москва. 2018. С. 311-313.
- 9. **Стифеева М.В.**, Сальникова Е.Б., Котов А.Б., Савко К.А., Толмачёва Е.В. U-Рь геохронологические исследования андрадита из щелочных пироксенитов Дубравинского массива (Воронежский кристаллический щит) // Материалы VII Российской конференции по изотопной геохронологии (5-7 июня 2018г., Москва, ИГЕМ РАН). Москва. 2018. С. 345-347.
- 10. **Стифеева М.В.**, Сальникова Е.Б., Котов А.Б., Владыкин Н.В., Горовой В.А. U-Рb возраст андрадиты из щелочных пород Мурунского массива (Алданский щит) // Материалы VII Российской конференции по изотопной геохронологии (5-7 июня 2018г., Москва, ИГЕМ РАН). Москва. 2018. С. 344-345.
- 11. **Стифеева М.В.**, Сальникова Е.Б., Котов А.Б., Арзамасцев А.А., Шахмурадян А.Р., Гриценко Ю.В., Анисимова И.В. Кальциевые гранаты как источник геохронологической информации о возрасте щелочных комплексов крупных магматических провинций // Материалы VII Российской конференции по изотопной геохронологии (5-7 июня 2018г., Москва, ИГЕМ РАН). Москва. 2018. С. 343-344.
- 12. **Stifeeva M.V.**, Salnikova E.B., Plotkina Yu.V., Peytcheva I., Vassileva R. Andradite from Dashkesan iron skarn deposit as a potentional standard reference material for U-Pb geochronological studies // National Conference «Geosciences 2018» (December 6-7, 2018, Sofia). 2018. V. 79. part 3. P. 61-62.
- 13. Peytcheva I., Burkhardt R., von Quadt A., Guillong M., Klimentyeva D., Salnikova E., **Stifeeva M.** From relative to absolute timing of ore mineralization using garnets: a case study of the Karavansalija Cu-Au skarn deposit in Rogozna Mountains, SW Serbia // National Conference «Geosciences 2018» (December 6-7, 2018, Sofia). 2018. V. 79. part 3. P. 57-59.
- 14. **Stifeeva M.V.**, Salnikova E.B., Kotov A.B. U-Pb garnet ages of the ijolites from Kola Alkaline Province massifs // Proceedings of International Conference "Magmatism of the Earth and related strategic metal deposits" (23-26 May 2019, Saint-Petersburg State University). Moscow. GEOKHI RAS. 2019. P. 293-295.
- 15. Salnikova E.B., **Stifeeva M.V.**, Kotov A.B. LIP's timing what's new // Материалы VII Международной конференции "Крупные изверженные (КИП 2019)" ( 28 августа 08 сентября 2019 г., Томск). Томск: "Томский центр научной информации". 2019. С. 113.
- 16. **Stifeeva M.V.**, Salnikova E.B., Chakmouradian A.R., Kotov A.B., Arzamastsev A.A., Peytcheva I. LIPs timing by U-Pb ID-TIMS dating of calcic garnets // The Goldschmidt Conference 2019 (18-23 August 2019, Barcelona). 2019.
- 17. Vassileva R.D., Dimitrova D., Peytcheva I., Grozdev V., von Quadt A., Guillong M., Salnikova E., **Stifeeva M.** Mineralogy, geochemistry and U-Pb geochronology of grandite from the Martinovo Feskarn deposit, Western Balkanides, Bulgaria // Proceedings of the "15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits" (27-30 August, 2019, Glasgow, Scotland). Glasgow. 2019. P. 416-419.
- 18. Peytcheva I., Burkhardt R., von Quadt A., Guillong M., Klimentyeva D., Salnikova E., **Stifeeva M.** Relative and absolute timing of the KMC Cu-Au skarn deposit in Rogozna Mountains (SW Serbia) using garnets // Proceedings of the "15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits" (27-30 August, 2019, Glasgow, Scotland). Glasgow. 2019.
- 19. **Стифеева М.В.**, Сальникова Е.Б., Котов А.Б., Подольская М.М., Аносова М.О., Пейчева И.М., Адамская Е.В. U-Pb возраст гранатов из железо-магнезиальных метасоматитов центральной части Алданского щита // Материалы VI Российской конференции по проблемам геологии и

- геодинамики докембрия (22-24 октября 2019 г., Санкт-Петербург, ИГГД РАН). Санкт-Петербург. 2019. С. 223-224.
- 20. Vassileva R., Grozdev V., Peytcheva I., von Quadt A., **Stifeeva M**. U-Pb dating of skarn garnets from Bulgarian deposits // EGU General Assembly 2020 (4-8 May 2020).
- 21. **Стифеева М.В.**, Сальникова Е.Б., Носова А.А. Новые данные о возрасте формирования щелочных пород Кольской магматической провинции // Материалы XIII Всероссийского петрографического совещания "Петрология и геодинамика геологических процессов" (6-13 сентября 2021г., Иркутск.



**Рисунок 1а.** Состав гранатов из пород щелочных и щёлочно-ультраосновных комплексов. Обозначения (содержания компонентов в %): A - моримотоит ( $Ca_3(Ti, Fe^{2^+})(SiO_4)_3$ ) + Mg-моримотоит ( $Ca_3(Ti, Mg)(SiO_4)_3$ ), B - шорломит ( $Ca_3Ti_2(Si, Fe^{3^+})O_1$ ) + хатчеонит ( $Ca_3Ti_2(Si, Al_2)O_1$ ), C - андрадит ( $Ca_3Fe^{3^+}(SiO_4)_3$ ).

**Рисунок 16.** Состав гранатов из скарновых пород и железо-магнезиальных метасоматитов. Обозначения (содержания компонентов в %): A – спессартин ( $Mn^{2+}_3Al_2(SiO_4)_3$ ) + пироп ( $Mg_3Al_2(SiO_4)_3$ ) + альмандин ( $Fe^{2+}_3Al_2(SiO_4)_3$ ), B – андрадит ( $Ca_3Fe^{3+}_2(SiO_4)_3$ ) + моримотоит ( $Ca_3(Ti, Fe^{2+})(SiO_4)_3$ ) + хатченионит ( $Ca_3Ti_2(Si, Al_2)O_{12}$ ), C – гроссуляр ( $Ca_3Al_2(SiO_4)_3$ ).

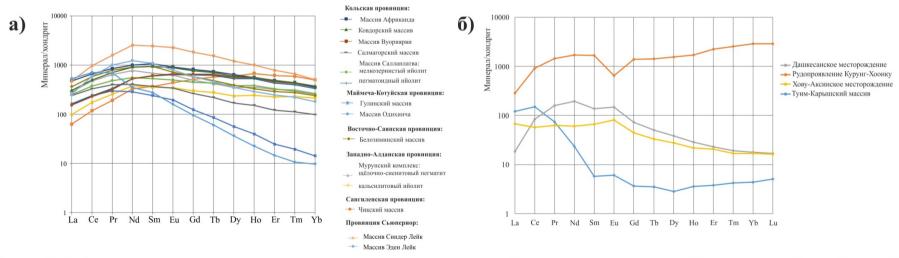



Рисунок 2а. График распределения редкоземельных элементов в гранатах из пород щелочных и щёлочно-ультраосновных массивов. Нормализовано по [Anders, Grevesse, 1989].

Рисунок 26. График распределения редкоземельных элементов в гранатах из скарновых пород и железо-магнезиальных метасоматитов. Нормализовано по [Anders, Grevesse, 1989].