Федеральное агентство научных организаций

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ГЕОХИМИИ им.А.П.ВИНОГРАДОВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИГХ СО РАН)

УДК 535.343.2	УТВЕРЖДАЮ
№ госрегистрании	Директор ИГХ СО РАН,
AAAA-A17-117101170035-3	Д.Г-М.Н
<u>Инв №</u>	А.Б.Перепелов
	« » 2018 г

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ Экспериментальная минералогия, рост и свойства кристаллов по теме: КРИСТАЛЛИЧЕСКИЕ И АМОРФНЫЕ ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ С ПРОГНОЗИРУЕМЫМИ СВОЙСТВАМИ (промежуточный)

Приоритетное направление IX.125. Фундаментальные проблемы развития литогенетических, магматических, метаморфических и минералообразующих систем

Шифр программы: IX.125.3 Шифр темы: 0350-2016-0024

Протокол Ученого совета ИГХ СО РАН № от «16 » января 2018 г.

Руководитель проекта д.ф.-м.н. профессор

А.И.Непомнящих

(подпись, дата)

Иркутск, 2018

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководи д-р физико-мате	итель темы, матических		А.И. Непомнящих
наук, профессор		подпись, дата	_
Руководители блок	:0В:		
доктор	физико-		Е.А. Раджабов (блок 1)
математических на	ук	подпись, дата	
кандидат	физико-		А.С.Мысовский (блок 2)
математических на	ук		
		подпись, дата	
кандидат	геолого-		А.М.Федоров (блок 3)
минералогических	наук	подпись, дата	
доктор	физико-		А.И. Непомнящих (блок 4)
математических	наук,		· · · · · · · · · · · · · · · · · · ·
профессор		подпись, дата	-

ΡΕΦΕΡΑΤ

Отчет включает 55 стр.; 34 рисунка; 15 таблиц; 11 использованных источников литературы; 1 приложение.

Ключевые слова: твердотельные материалы, твердотельные детекторы, мультикристаллический кремний, межзеренные границы.

Основной целью проекта является исследование процессов, приводящих к изменению исходной валентности редкоземельных ионов в кристаллах галоидов, фазового состояния, точечных и примесных дефектов, а также электронных возбуждений и оптических свойств твердого тела с помощью расчетно-теоретических методов квантовой химии и молекулярной динамики. Определение условий образования высокочистых кварцитов западного обрамления Гарганской глыбы Восточного Саяна и разработка процессов получения оптического кварцевого стекла и мультикристаллического кремния для солнечной энергетики на основе этого кварцевого сырья.

Изучены процессы пересадки электрона в кристаллах BaF_2 с активацией двумя разными лантаноидами. В качестве акцепторов использовались ионы лантаноидов с наиболее глубокими уровнями Eu, Yb, Sm. Донорами являлись лантаноиды — Nd, Sm, Dy, Ho, Er, Tm, Yb. Выращивались кристаллы BaF_2 с двойной активацией фторидами лантаноидов одной группы (EuF3, YbF₃, SmF₃) и лантаноидами другой группы (NdF₃, SmF₃, DyF₃, HoF₃, ErF₃, TmF₃, YbF₃). Максимальное преобразование полос получено в кристаллах с акцептором Yb²⁺.

Рассмотрены процессы, которые происходят при локализации основного вырожденного d –состояния в зоне проводимости (образование резонансных состояний) и которые в конечном счете приводят, вследствие усиления эффекта Яна-Теллера, к образованию анионной вакансии около примесного иона или к внецентровому смещению примесного катиона.

Методами квантовой химии твердого тела были исследованы собственные дефекты в кристаллах LaF₃, а именно анионные вакансии, F-центры и V_k-центры. с помощью программного комплекса VASP продолжено исследование кристаллов дигалоидов бария и стронция с примесями иона Eu^{3+} . В данных расчетах использовалась суперячейка 2x2x1 (48 атомов), в которой один из атомов Ba^{2+} был заменен на атом Eu^{2+} . К-сетка состояла из 8 k-точек в неприводимой части зоны Бриллюэна, при этом функционал плотности PBE применялся для основного состояния системы, а приближение GW0 для расчетов энергии

запрещенной зоны. Расчеты положения 4f уровня иона европия были проведены как в приближении PBE+U (c Ueff = 2,5), так и методом GW0.

Выявлены основные продуктивные разновидности кварцитов Восточного Саяна. Детально изучены их петрографические характеристики, минеральные и флюидные включения. Получены особо-чистые кварцевые концентраты из всех выделенных типов и оптическое кварцевое стекло. Разработаны база данных «Суперкварциты», позволяющая повысить эффективность обработки данных и проведение поисково-оценочных работ.

При низкой скорости кристаллизации получены образцы мультикремния с высокими значениями времени жизни неосновных носителей, что очень важно для солнечной энергетики.

СОДЕРЖАНИЕ

Реферат	3
Содержание	5
Введение	6
Раздел 1. Валентность редкоземельных ионов в кристаллах галоидов	8
Раздел 2. Квантово-химическое исследование твердотельных материалов	14
Раздел 3. Высоко-чистые кварциты Восточного Саяна	22
Изотопно-геохимические исследования кварцитов Ока-Урикского участка	24
Описание базы данных «Суперкварциты»	27
Логическое представление данных	27
Физическое представление данных	30
Раздел 3. Оптическое кварцевое стекло и мультикристаллический кремний для	
солнечной энергетики	33
Заключение	51
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.	53
Приложение А	54

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

АЛЭ — автолокализованный экситон.

F-центр — собственный дефект в ионных кристаллах, представляет собой анионную вакансию с захваченным электроном.

Vk-центр — автолокализованная дырка в ионных кристаллах.

LDA — приближение локальной плотности (local density approximation).

GGA — обобщенное градиентное приближение (generalized gradient approximation)

ВННLYP — гибридный функционал плотности, отличается от известного функционала ВЗLYP вкладом обменной энергии Хартри-Фока, составляющим 50%. Включает также обменную поправку B88 (Becke) и корреляционный функционал LYP (Lee-Yang-Parr).

PBE — один из распространенных функционалов плотности в обобщенном градиентном приближении, назван по фамилиям авторов (Perdew-Burke-Erzenhov).

CASSCF — метод полного наложения конфигураций в пространстве активных орбиталей (complete active space self consistent field).

PBESol — функционал плотности в обобщенном градиентном приближении на основе функционала PBE, оптимизированный для расчета твердых тел.

DFT — теория функционала плотности (density functional theory).

DFT+U — приближенный метод в расчетах по функционалу плотности, позволяющий скорректировать степень локализации электронных состояний для выбранных атомных оболочек.

РВЕ+U — метод DFT+U применительно к функционалу РВЕ.

К-сетка — набор векторов обратного пространства кристалла в пределах первой зоны Бриллюэна, используемый для моделирования заселенности состояний кристалла в расчетах по методам DFT в периодической модели.

GW и GW0 — приближения в теории функционала плотности, используемые для расчета спектра возбужденных состояний системы.

РZТ — твердый раствор материалов РZ (PbZrO3) и РТ (PbTiO3).

ВВЕДЕНИЕ

Необходимость разработки методов получения твердотельных материалов с заданными оптическими, электрофизическими и физико-механическими свойствами определяется, прежде всего, требованиями современных направлений развития электроники, фотоники и других областей техники. Основное применение имеют кристаллические и аморфные материалы. Проект состоит из четырех блоков, связанных с исследованием процессов, приводящих к изменению валентности редкоземельных ионов в кристаллах галоидов, квантово-химическим исследованием твердотельных материалов, процессами получения оптического кварцевого стекла и мультикристаллического кремния для солнечной энергетики и установлением генезиса высокочистых кварцитов для разработки критериев поисковых работ на данный тип сырья.

РАЗДЕЛ 1. ВАЛЕНТНОСТЬ РЕДКОЗЕМЕЛЬНЫХ ИОНОВ В КРИСТАЛЛАХ ГАЛОИДОВ

Задание 2017 г. Изучение процессов преобразования валентности редкоземельных ионов и условий устойчивости ионов переходных металлов различной валентности в ионных кристаллах.

Изучались процессы пересадки электрона в кристаллах BaF_2 с активацией двумя разными лантаноидами. В качестве акцепторов использовались ионы лантаноидов с наиболее глубокими уровнями Eu, Yb, Sm. Донорами являлись лантаноиды — Nd, Sm, Dy, Ho, Er, Tm, Yb. Выращивались кристаллы BaF_2 с двойной активацией фторидами лантаноидов одной группы (EuF₃, YbF₃, SmF₃) и лантаноидами другой группы (NdF₃, SmF₃, DyF₃, HoF₃, ErF₃, TmF₃, YbF₃). Европий является абсолютным акцептором, тогда как Yb, Sm могут быть и донорами и акцепторами. Примеси донорные и акцепторные лантаноиды вводились в равных концентрациях с уровнями 0.01, 0.03, 0.1 моль. %. В некоторых случаях часть донорных примесей переходила в двухвалентную форму (пары Eu-Ho, Yb-Sm). В большинстве случаев кристаллы содержали примеси обоих лантаноидов в трехвалентном виде.

Для перевода лантаноидов в двухвалентную форму применялась процедура аддитивного окрашивания. После аддитивного окрашивания значительная часть акцепторных примесей переходила в двухвалентную форму, тогда как донорные лантаноиды оставались трехвалентыми. Наличие двухвалентных лантаноидов контролировалось по известным полосам поглощения в интервале длин волн 160 — 2000 нм.

Фотопересадка электрона наблюдалась нами по преобразованию полос поглощения в кристаллах с акцепторами Eu, Yb, Sm и донорами Nd, Sm, Dy, Ho, Er, Tm, Yb. Наибольшее преобразование полос получено в кристаллах с акцептором Yb^{2+} . На рис.1 показано фоторазрушение полос Yb^{2+} ионов при 354, 240, 189 нм и образование полос ионов Sm^{2+} .

Рис.1 Спектры оптического поглощения кристаллов BaF₂-0.1%YbF₃-0.1%SmF₃ измеренные при комнатной температуре после освещения светом озоновой ртутной лампы (185 нм) и последующего прогрева в течение 3 минут при указанных температурах.

При нагревании фотообесцвеченных кристаллов происходила обратная перезарядка. Считая процесс обратного преобразования арреунисовым можно по кривой термообесцвечивания определить энергию активации и частотный фактор процесса.

Экспериментальные энергии активации для лантаноидов (рис.2) следует отнести к энергиям выхода электрона из основного состояния двухвалентных лантаноидов в зону проводимости кристалла фторида бария. Полученные экспериментальные энергии выхода электронов в зону проводимости BaF₂ уточняют энергии, оцененные на основе эмпирической модели [1.2].

В течение последних нескольких лет мы занимались изучением поведения дефектов в широкозонных диэлектриках, которое оказалось гораздо сложнее, чем предлагавшаяся ранее простая последовательность реакций между точечными дефектами (Френкеля или Шоттки). Это относится как к собственным, так и примесным дефектам. В частности, обнаружена неустойчивость некоторых валентных состояний редкоземельных и переходных ионов, приводящая или в перестройки ближайшего окружения или смещению примесного иона. Ранее такие процессы обнаружены и интенсивно исследовались исключительно в полупроводниках.

Рис.2 Кривые термообесцвечивания длиноволновых полос поглощения кристаллов BaF₂-Yb-Re. Измерения выполнены при комнатной температуре после последовательного прогрева в течение Зминут при указанных температурах. Кривые термообесцвечивания рассчитаны для процесса 1го порядка с полученным частотным фактором

В настоящее время нами рассмотрены процессы, которые происходят при локализации основного вырожденного d –состояния в зоне проводимости (образование резонансных состояний), которые в конечном счете приводят, вследствие усиления эффекта Яна-Теллера, к образованию анионной вакансии около примесного иона (в случае некоторых редкоземельных двухвалентных металлов) или к внецентровому смещению примесного катиона (в случае одновалентны ионов переходных металлов). Для подтверждения этого измерены спектры поглощения и электронного парамагнитного резонанса в кристаллах BaF₂-Ni. В отличие от литературных данных одновалентные ионы никеля в наших кристаллах создавались в процессе выращивания кристаллов, а не только при радиационном окрашивании. В спектрах ЭПР наблюдается сигнал от Ni+ центров занимающих внецентровую позицию и сигнал с частично разрешенной структурой пока не выясненной природы.

Рис. 3. Спектр ЭПР при 80 К кристаллов CaF₂-La, облученных рентгеновским излучением при комнатной температуре

Ранее было предложено [4], что образование фотохромных PC+ центров, включающих в себя примесный ион и анионную вакансию, связано с конфигурационной неустойчивостью основного d1 состояния двухвалентного редкоземельного иона, так как его основное состояние локализовано в зоне проводимости. То есть химическая неустойчивость двухвалентных соединений для этих ионов приводит к образованию PC+ центров, которые можно представить как двухвалентный ион около анионной вакансии в щелочноземельных фторидах. Перенос электрона с двухвалентного редкоземельного иона на анионную вакансию приводит к образованию PC-центров (PC-центр –F-центр около трехвалентного редкоземельного иона).

Для подтверждения предложенной ранее модели исследована структура РС центров с помощью оптических методов и электронного парамагнитного резонанса. В кристаллах CaF₂, SrF₂, активированных рядом редкоземельных ионов (La, Ce, Gd, Tb и Lu и Y), которые образуют фотохромные центры, наблюдается ЭПР спектр, представленный на рисунке 3 для нескольких ориентаций кристалла в магнитном поле. Температурная зависимость ЭПР сигнала показана на рисунке 4.

Рис.4 Температурная зависимость ЭПР сигнала и разрушения РС центров по спектрам поглощения в кристаллах CaF₂, активированных рядом редкоземельных ионов

С увеличением температуры отжига этих кристаллов сигнал увеличивается и наблюдается максимум при температуре 220-230 °C, затем при температуре 350 центры, ответственные за этот ЭПР сигнал полностью разрушаются. Температурное разрушение РС центров показано на рисунке 5 и происходит в два этапа на первом этапе приблизительно 100-180 °C не происходит изменений в структуре спектра поглощения, на втором этапе 180-350 °C происходит незначительные изменения в спектре поглощения PC центров. Так в кристаллах CaF2- Tb (Puc.5) наблюдается небольшое смещение полос поглощения в коротковолновую сторону и меняется соотношение между полосами поглощения. Это указывает на то, что при неизменности электронной структуры PC центра к нему, по-видимому, присоединяется возмущающий дефект — возможно междоузельный ион фтора для компенсации заряда. При 350 °C PC центры полностью разрушаются, как и ЭПР сигнал.

На основании экспериментальных данных можно сделать следующие выводы – экспериментальные данные в основном подтверждают модель PC центра – в виде F-

центра около трехвалентного редкоземельного иона. На первом этапе отжига парамагнитные свойства центра слабо проявляются, возможно, из-за малого времени спин-

Рис.5 Температурные изменения спектров поглощения PC центров в кристаллах CaF2-Tb решеточной релаксации, которое увеличивается при присоединении к PC центру возмущающего дефекта (возможно междоузельного иона фтора). Несмотря на то, что при рассмотрении только первой сферы ближайшего окружения F-центра (электрон в анионной акансии), его можно отнести к центру, имеющего октаэдрическую симметрию Oh, для которой наиболее простая картина наблюдается в направлении <111>. При учете второй и, что более важно, третьей сферы ближайшего окружения (взаимодействие с которой в случае обычного F-центра в ряде случаев на порядок выше, чем со второй, дает тетраэдрическую симметрию Td, для которой наиболее простая картина наблюдается в направлении <100>. С учетом второй и третьей сферы F-центр находится в центре куба, ребрами которой являются три ядра фтора второй и третьей координационных сфер и имеет симметрию Td. По-видимому, существенный вклад третьей сферы играет важную роль в формирования спектра ЭПР этого центра.

РАЗДЕЛ 2. КВАНТОВО-ХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ТВЕРДОТЕЛЬНЫХ МАТЕРИАЛОВ

Задание 2017 года. Расчеты собственных дефектов и примесей Sm, Eu, Tb в кристаллах LaF3 и CeF3 методами квантовой химии и молекулярной динамики, а также теоретическое исследование электронной структуры сложных вольфраматов редкоземельных элементов и переходных металлов

Методами квантовой химии твердого тела были изучены собственные дефекты в кристаллах LaF₃, а именно анионные вакансии, F-центры и V_k-центры. Использовались два метода – метод встроенного кластера в сочетании с функционалом плотности ВННLYP и периодический расчет функционалом PBE в базисе плоских волн.

Установлено, что анионной вакансии энергетически выгодно образовываться в подрешетке F(2), причем выигрыш в энергии по сравнению с подрешеткой F(1) составляет около 0.8 эВ по результатам обоих методов расчета. В то же время F-центру выгоднее, наоборот, образовываться в подрешетке F(1). По результатам кластерного расчета выигрыш составляет около 0.4 эВ, однако эти данные, возможно, нуждаются в уточнении. На рис. 6 изображена молекулярная орбиталь однократно занятого состояния F-центра в запрещенной зоне для обеих конфигураций.

Рис. 6. Молекулярная орбиталь неспаренного электрона F-центра в кристалле LaF_3 а) в подрешетке F(1) и б) в подрешетке F(2).

В том же кристалле LaF₃ было выполнено теоретическое исследование электронной структуры примесного редкоземельного дефекта Sm²⁺ с помощью высокоточного многоконфигурационного метода CASSCF с учетом скалярных релятивистских поправок и спин-орбитального взаимодействия.

По результатам моделирования установлено, что зарядовым компенсатором для редкоземельного иона Sm^{2+} выступает ближайшая к нему вакансия в анионной подрешётке F(2) кристалла LaF₃. Наблюдаемая в экспериментальном спектре поглощения полоса на 16600 см⁻¹ согласуется с переходами электронов с редкоземельного центра Sm^{2+} на 1s орбиталь вакансий. Теоретический полученный спектр поглощения представлен на Рис. 7.

Рис. 7. Рассчитанный и экспериментальный спектр оптического поглощения центров Sm²⁺ в кристалле LaF₃.

Автолокализованная дырка (V_k- центр) и автолокализованный экситон (АЛЭ) в кристаллах CaF₂ и BaF₂ были исследованы методом молекулярной динамики из первых принципов. Для расчета кристалла с дефектом использовалось приближение DFT+U с функционалом PBESol и параметрами U=11 и J=3. Данные значения параметров были предварительно подогнаны по равновесным характеристикам V_k-центра в кристалле CaF₂. Применение метода DFT+U позволяет решить проблему делокализации дырочных состояний в приближениях LDA и GGA (данные приближения не описывают автолокализацию дырки). Для моделирования кристалла фторида кальция с точечным дефектом мы построили суперячейку из 96 атомов, а k-сетка состояла только из Γ -точки, что оправдано для ионных кристаллов. Расчеты выполнялись в программном комплексе VASP.

Данным методом был исследован механизм диффузии V_k - центра в кристаллах CaF₂ и BaF₂, а также стабильность конфигураций АЛЭ в CaF₂. Кроме того, было рассмотрено влияние аксиального стресса на дефекты.

В ходе молекулярной динамики для V_k -центра в CaF₂ наблюдалось два типа перескока: перескок дефекта вдоль собственной оси и переориентацию с поворотом на 90⁰. Была проанализирована вероятность перескока вдоль оси дефекта в зависимости от температуры. Для второго типа перескока такая зависимость не была построена из-за малого числа событий. А для BaF₂ механизм диффузии отличается от выше описанного тем, что добавляется перескок во временное промежуточное состояние (рис. 8)

Рис. 8. Конфигурации V_k – центра в кристалле фторида бария 1) стабильное состояние V_k – центра; 2) временное промежуточное состояние (V-H пара).

Из теоретически предсказанных ранее конфигураций в нашем расчете молекулярной динамики для автолокализованного экситона при постоянном нагреве была реализована только одна конфигурация (1a, 1б, 1в) и была построена зависимость реализации в зависимости от температуры (рис.9).

Рис. 9. Число событий перехода между конфигурациями 1a, 1б и 1в автолокализованного экситона в зависимости от температуры в кристалле CaF₂.

Внесение аксиального стресса в модель (при сжатии) по одной из осей на 0,31% не оказало никакого влияния на конфигурацию автолокализованного экситона в кристалле CaF₂. В тоже время сжатие оказало сильное влияние на ориентацию V_k-центра и направление диффузии. V_k-центру выгодно по положению ориентироваться и диффундировать вдоль оси сжатия.

Также с помощью программного комплекса VASP продолжено исследование кристаллов дигалоидов бария и стронция с примесями иона Eu³⁺. В данных расчетах

использовалась суперячейка 2x2x1 (48 атомов), в которой один из атомов Ba^{2+} был заменен на атом Eu^{2+} . k-сетка состояла из 8 k-точек в неприводимой части зоны Бриллюэна, при этом функционал плотности РВЕ применялся для основного состояния системы, а приближение GW_0 для расчетов энергии запрещенной зоны

Расчеты положения 4f уровня иона европия были проведены как в приближении PBE+U (с Ueff = 2,5), так и методом GW₀. Результаты расчётов представлены в таблице 1. Из результатов видно, что при расчетах разными методами положение 5d уровня европия находится ниже зоны проводимости. Тем не менее, ни одним и методом не удалось достичь локализации возбужденного 5d уровня на примесном ионе в кристалле SrCII. Ошибка же в положении уровней может быть связана с тем, что параметры решетки не известны для дигалоидов стронция. На основании расчетов в комплексе с экспериментальными данными были построены диаграммы Доренбоса для данных кристаллов (Puc 10.).

Рис. 10. Рассчитанная проецированная плотность состояний кристаллов BaBrI, SrBrI, BaClI, SrCII с примесью самария.

Кристалл	Запрещенная зона			Eu2 4f - V	+ BM	Eu2+ 4f - 5d	Eu2 5d - C	2+ BM
	PBE	GW ₀	Эксп.	PBE+U	GW ₀	эксп.	PBE+U	GW_0
BaBrI	3.49	5.34	5.58±0.17	1.40	1.84	3.29	0.65	0.21
BaClI	3.71	5.57	6.26±0.3	1.50	2.16	3.32	0.75	0.09
SrBrI	3.44	5.50	5.83±0.24	1.27	1.62	3.18	1.05	0.7
SrClI	3.92	5.98	-	1.49	2.03	~ 3.2	1.29	0.75

Таблица 1: Основные параметры зонной структуры кристаллов

На рисунке 11 представлены спектры свечения, возбуждения и поглощения дигалоидов бария и стронция.

Рис. 11. Спектры поглощения, возбуждения и свечения кристаллов BaBrI-0.05 Eu, SrBrI-0.3 Eu, BaCII-0.1 Eu.

В кристаллах SrBrI и BaBrI были измерены температурные зависимости тушения 5d-4f люминесценции ионов европия при внутрицентровом возбуждении (рис. 12). Кривая хорошо описывается уравнением Мотта:

$$I = \frac{1}{1 + A \exp\left(-\frac{E}{k_B T}\right)}$$
(1)

По кривым был оценен энергетический барьер термического тушения 5d-4f свечения ионов Eu^{2+} . В кристаллах BaBrI-Eu он составляет 0.57 ± 0.04 эB, в кристаллах SrBrI-Eu 0.84 ± 0.03 эB. В работе [3] отмечается, что при возбуждении электрона на основное 5d состояние происходит тепловое возбуждение состояний 5d электронов в зону проводимости, тем не менее 5d-электрон остается связанным в Eu^{3+} захваченном экситонном состоянии, из которого он возвращается без излучения в основное состояние Eu^{2+} . Энергетический барьер термического тушения качественно согласуется с разностью энергий между самым низким 5d-состоянием и дном зоны проводимости.

Рис. 12. Температурное тушение 5d-4f люминесценции ионов Eu2+ в кристаллах BaBrI (кривая 1) и SrBrI (кривая 2).

Согласно полученным экспериментальным и теоретическим данным были построены схемы расположения уровней двух- и трехвалентных редкоземельных ионов в исследуемых материалах (рис. 13).

Рис. 13. Диаграмма расположения уровней двух- и трехвалентных редкоземельных ионов в кристаллах BaBrI и SrBrI. Синяя кривой показаны 4f (треугольники) и нижайшее 5d (круги) состояния, красной кривой показаны уровни двухвалентных редкоземельных ионов - 4f (треугольники) и нижайшее 5d (круги) состояния.

Локальная структура пьезоэлектрических керамик цирконата-титаната свинца (PZT) $PbZr_{0.7}Ti_{0.3}O_3$, $PbZr_{0.6}Ti_{0.4}O_3$, $PbZr_{0.5}Ti_{0.5}O_3$ была рассчитана в рамках теоретического подхода, комбинирующего поиск локальных структур с помощью расчетов методом теории функционала плотности, и моделирование на их основе дифракционных данных. Для керамик $PbZr_{0.7}Ti_{0.3}O_3$, $PbZr_{0.6}Ti_{0.4}O_3$, $PbZr_{0.5}Ti_{0.5}O_3$ были получены многофазные

модели структуры. Было показано, что, во-первых, многообразие возможных вариантов распределения катионов Zr и Ti по структуре цирконата-титаната свинца влечет реализацию большого количества атомных конфигураций, обладающих схожими значениями относительной полной энергии. Это приводит к тому, что на локальном уровне, структура PZT оказывается составленной из низкосимметричных фаз преимущественно триклинной либо моноклинной сингоний. Соседствующие фазы, т.е. домены, могут отличаться друг от друга направлением вектора поляризации \dot{P} , взаимным расположением В-катионов (Zr, Ti) и другими структурными параметрами. Как известно, такая доменная структура может давать значительный вклад в пьезоэффект, проистекающий от движения доменных стенок. Для керамик PbZr_{0.7}Ti_{0.3}O₃, PbZr_{0.6}Ti_{0.4}O₃, которым исторически приписывалась одна и та же группа симметрии R3m, было обнаружено частичное сохранение дальнего порядка в подрешетке В-катионов, которое выражается в схожести типов упорядочения В-катионов в фазах, составляющих модель (рис. 14).

Рис. 14. а) экспериментальная и модельная парные функции распределения для $PbZr_{0.7}Ti_{0.3}O_3$, $PbZr_{0.6}Ti_{0.4}O_3$, $PbZr_{0.5}Ti_{0.5}O_3$; b), c) состав модели для $PbZr_{0.6}Ti_{0.4}O_3$, спроецированный на шаблоны расположения В-катионов

Было проведено статистическое исследование влияния вакансии кислорода на структурные и сегнетоэлектрические свойства цирконата-титаната свинца. С помощью расчетов большого количества локальных структур РZT методом теории функционала плотности было установлено, что возникновение вакансии кислорода может повлечь сильную релаксацию структуры, в том числе изменение направления вектора поляризации. Данный эффект может быть использован для борьбы с деградацией пьезоэлектрических материалов, так как вызывает своеобразное *обновление* доменной структуры.

Продолжается развитие новго метода поиска структуры сложных многоатомных систем – шаблонного метода, основанного на использовании структурных шаблонов. Данному методу мы дали английское название Pattern Assisted Structure Search (PASS). С помощью шаблонного метода были получены новые углеродные тороидальные наноструктуры. Тем самым, показана принципиальная применимость метода для решения проблемы поиска структуры наночастиц. Также данный метод применяется для построения конфигураций межзеренных границ в кремнии и малых нанокластеров фторидных материалов (CaF₂, LaF₃).

Был получен ряд механически стабильных конфигураций наноторов с различным числом атомов. Используя предложенный критерий устойчивости, можно ранжировать полученные структуры по степени их предполагаемой термодинамической устойчивости для дальнейших исследований, что позволит рациональнее использовать вычислительные ресурсы. Впервые построена корреляционная зависимость энергии кривизны от числа атомов N для углеродных наноторов, она имеет вид N^{-1.3}.

Среди построенных конфигураций наблюдаются наноторы как с металлическим, так и с диэлектрическим типом электронной структуры. У некоторых наноторов, обладающих низкой симметрией, практически отсутствует запрещенная зона, а с повышением симметрии структуры происходит увеличение ширины запрещенной зоны.

РАЗДЕЛ 3. ВЫСОКО-ЧИСТЫЕ КВАРЦИТЫ ВОСТОЧНОГО САЯНА

Задание 2017 года. Изотопно-геохимические и минералого-петрографические исследования кварцитовых толщ Ока-Урикского участка. Создание базы данных.

Минералого-петрографическая характеристика кварцитов Ока-Урикского участка.

Высокочистые разновидности кварцитов Ока-Урикского блока, ранее названные суперкварцитами [5,6] практически мономинеральны и на 99,9% сложены кварцем. На фоне мелко- (<0,2 мм) и среднебластовых (0,2-2 мм) кварцевых агрегатов выделяются прозрачные бесцветные удлиненные агрегаты кварца размерами до 3 мм. Они ориентированы либо субпараллельно, либо не имеют четкой ориентировки.

Мелкозернистые кварциты отличаются от суперкварцитов относительной однородностью агрегатов по форме и размерам, они сложены микро- и тонкобластовым кварцем (<0,1 мм). В обеих разновидностях кварцитов выявлены включения диккита, алунита, пирита, серицита, а также тонкие прожилки и точки углеродистого вещества в межзерновом пространстве.

Сливной кварцит Юго-западного участка (образец 857) отличается от других типов кварцитов размерностью и соотношением, слагающих породу агрегатов. Субпараллельная ориентировка в породе проявлена слабо. Реликты мелких агрегатов кварца (около 25% породы) заполняют промежутки между крупными и преимущественно гигантозернистыми (> 5 мм) агрегатами кварца, слагающими 75% породы; отмечаются единичные чешуйки серицита.

Сливной кварцит в образце СС (рис.15) отличается от сливного кварцита образец 857. Микроструктура кварцита гомеобластовая, то есть составляющие в этой породе практически одного размера и порфиробласты отсутствуют. Весь образец нацело сложен кварцем. Кварц характеризуется гранобластовым обликом, а именно представлен изометричными зернами почти одинакового размера. На отдельных участках образца встречаются зерна чуть меньшей размерности, но такие участки редки. Границы кварца ровные, иногда раковистые, редко зазубренные. Особенностью кварца, слагающего образец является то, что при скрещенных поляризаторах в некоторых агрегатах наблюдается псевдодвойниковое погасание, иногда как в плагиоклазе, иногда как в ортоклазе. Такой характер погасания свидетельствует о динамо-тектоническом воздействии. В других агрегатах кварца погасание волнистое и облачное.

Рис. 15. Образец сливного кварцита с каймой сахаровидного кварца, из которого отобраны пробы SW 1 и SW 2.

Сахаровидный кварцит образует каймы вокруг сливного кварцита (образец СС) и встречается внутри него в виде каплевидных скоплений. На границе этих двух типов кварцитов в шлифе при скрещенных поляризаторах наблюдается еле заметное общее удлинение агрегатов в одном направлении. На микроуровне граница между этими двумя типами кварцитов проявлена плохо, размыта, трудно установить, где заканчивается один тип и начинается другой. В образце напротив границы очень четкие и резкие, хорошо видны. Так же как и сливном, в сахаровидном кварците встречаются агрегаты с псевдодвойниковым погасанием. Сахаровидный от сливного в образце СС отличается чуть более разнообразным гранулометрическим составом (линейка агрегатов чуть более разнообразна по размерам). В целом характер взаимоотношений и границ между агрегатами в сахаровидном такой же, как в сливном. Сахаровидный сложен агрегатами кварца, минеральные примеси отсутствуют. Этот тип кварцевого материала является уникальным по чистоте. В таблице 2 приведены концентрации примесей в образцах SW-1 и SW-2 в сравнении с наиболее чистой разновидностью кварцитов месторождения Бурал-Сардык, ранее изученными нами.

Таблица 2. Массовые доли примесей в исходных образцах, ppm.											
Тип кварца	Fe	Al	Ti	Ca	Mg	Cu	Mn	Na	K	Li	Σ10
Суперкварцит	6	27	1,7	0,8	1	0,17	0,02	3,5	6,3	0,13	46,6
SW-1	2,1	8,8	0,4	10,6	0,9	0,05	0,04	4,5	0,8	0,4	28,7
SW-2	0,6	6,6	0,4	5,2	0,4	0,04	0,02	5,4	1,1	0,4	20,3

Кварциты северо-восточного участка сложены на 99,5 % агрегатами кварца, характеризуются слоистой микротекстурой, гетерогранобластовой, на отдельных участках

порфировидной микроструктурой. Размеры агрегатов варьируются в широком диапазоне от <0,1 до 1,5 мм. Второстепенные минералы представлены единичными иголочками серицита.

Изотопно-геохимические исследования кварцитов Ока-Урикского участка

В магматических, осадочных и метаморфических породах наблюдаются широкие вариации изотопного состава кислорода. Основная часть силикатных минералов характеризуются положительными значениями δ^{18} O в диапазоне от +5 до +15 ‰ относительно SMOW.

В магматических породах отмечается тенденция увеличения значения δ^{18} O с повышением содержания SiO₂: от (+5,4 -+6,6‰) в ультрабазитах до (+7 -+13‰) в гранитоидах и пегматитах, в высококремнеземистых осадочных породах типа кварцевых песчаников значения δ^{18} O не превышают +10‰, а в кремнях могут достигать +35‰.

Наиболее высокими величинами δ^{18} O - до 42‰ и выше характеризуются современные органогенные морские осадки, формирующиеся при низких температурах. При этом терригенные осадки, хотя и имеют достаточно высокие содержания кремнезема в породе в зависимости от содержания в них обломочного и аутигенного материала имеют интервал δ^{18} O - от 10 до 15‰ [7].

Изменение изотопного состава кислорода как интрузивных пород, так и пород вмещающей рамы в посткристаллизационный период доказан рядом работ [8] и может достигать значительных размеров и превышать размеры зоны контактового метаморфизма.

Содержание ¹⁸О в кварцитах может варьировать от 15 ‰ до 35 ‰ [8-10] В работе [12] на огромном фактическом материале показано, что содержания ¹⁸О в кварцитах всех континентов Земли для неопротерозойского периода лежат в диапазоне приблизительно от 20 до 30 ‰.

Полученные результаты изотопного состава кислорода кварцитов Восточного Саяна лежат на уровне максимальных для этих пород и возраста значений (таблица 3) как для исходных слабо метаморфизованных (проба 302), так и для всех типов пород пластового разреза (пробы 229, 233 – «суперкварциты», 176 – мелкозернистый серый, 822 мелкозернистый темно-серый). В зоне контактового воздействия гранитоидов на обоих участках происходит смещение изотопного состава ¹⁸О в кварцитах в сторону низких величин.

Некоторые участки пластовых тел подвергались воздействию гранитоидов, на что указывает изменение изотопного состава кварца (пробы 237 – мелкозернистый серый), но

были перекристаллизованы с выносом пигментирующего углистого вещества и привнесенных элементов-примесей.

В сливных кварцитах Юго-западного участка (пробы 880, SW 1 и SW 2) изменений изотопного состава ¹⁸О не отмечается, что указывает на перекристаллизацию кварцитов без влияния эндогенного флюида. Перекристаллизация с выносом вещества из сахаровидных кварцитов из оторочки образца со снижением 10 нормируемых элементов-примесей на 25-30% происходит в процессе динамометаморфогенного или механохимического преобразования за счет собственного флюида.

Таблица. 3. Результаты определения изотопного состава кислорода в пробах кварца из кварцитов Восточного Саяна (в промилле относительно SMOW).

Ν	Номер	Название породы Местонахождение		d180	
п/п	пробы			% ₀	
		Кварцит	Северный участок Ока-		
1	229	крупнозернистый белый	Урикского блока,	29,8	
		(«суперкварцит»)	максимально измененный		
		Кварцит	Северный участок Ока-		
2	233	крупнозернистый белый	Урикского блока,	29,8	
		(«суперкварцит»)	максимально измененный		
		Vpapuum	Северный участок Ока-		
3	176	Кварцит	Урикского блока,	29,2	
		мелкоозернистый серый	измененный		
			Северный участок Ока-		
4	227	Кварцит	Урикского блока,	26.2	
4	257	мелкоозернистый серый	измененный, контакт с	20,5	
			гранитоидами		
		Кварцит	Северный участок Ока-		
5	5 822 мелкоозернистый темно		Урикского блока,	29,7	
		серый	измененный		
			Северный участок Ока-		
	220	кварцит мелкоозернистый темно-	Урикского блока,	27,1	
6	238		измененный, контакт с		
		серыи	гранитоидами		
		10	Северный участок Ока-		
7	220	Кварцит мелкоозернистый темно-	Урикского блока,	26.5	
/	239		измененный, контакт с	26,5	
		серыи	гранитоидами		
			Уренгенурский блок,		
0	202	Кварцит	слабометаморфизованный	20.2	
8	302	микрозернистый серый	на максимальном	29,5	
			удалении от интрузива		
			Уренгенурский блок,		
0	0 005	Кварцит	слабометаморфизованный	07.1	
9 295	микрозернистый серый	пространственно	27,1		
		тяготеющий к интрузиву			
10	CW 1	IC	Юго-западный участок	20.21	
10	SW I	кварцит сливнои	Ока-Урикского блока.	50,51	
11	CW 2	V	Юго-западный участок	20.20	
11	5W 2	кварцит сахаровидный	Ока-Урикского блока.	30,39	
10	000	V	Юго-западный участок	20 (0	
12	880	кварцит сливнои	Ока-Урикского блока.	28,69	

Пробы SW 1 и SW 2 отобраны из одного образца.

Описание базы данных «Суперкварциты»

База данных «Суперкварциты» разработана для упорядоченного хранения и обработки геолого-геохимических данных, и дальнейшего использования при оценке запасов месторождений кварцевого сырья, построения карт распространения минералов, сопоставления их с геологическими, топографическими и тектоническими картами и другими геологическими телами. В сочетании с разработанным программным пакетом «ModuLi», который позволяет повысить эффективность анализа геохимических данных, посредством их преобразования в комплексные геохимические показатели, повышается эффективность оценки месторождений. Метод расчета «модулей» реализован на основе картографического подхода. При помощи программного пакета Ouantum GIS организуется визуализация данных и построение картографического материала.

Логическое представление данных

На рисунке 16 представлена схематическая модель базы данных разработанной в PostGIS.

Рис. 16. Схематическая модель связей БД «Суперкварциты»

В таблице 4 содержатся границы лицензионных участков. В поле BLA_id хранится уникальный идентификатор участков работ, с его помощью осуществляется связь данных по участкам в БД «Суперкварциты».

Имя таблицы	Поле	Тип данных	Пояснение
	id	serial (not null)	Порядковый номер
Boundary_lic- ense_area	BLA_id	integer (key)	Уникальный идентификатор участка работ
	name	character varying (not null)	Название лицензионного участка

Таблица 4. Граница лицензионного участка

В таблице 5 Catalog_point содержатся данные GPS навигаторов и полевых дневников, в ней хранятся координаты точек пробоотбора, время отбора, фамилия специалиста проводившего отбор проб, год проведения экспедиции, а так же данные о типе пород и элементах залегания.

Таблица 5 Каталог пространственной характеристики

Имя таблицы	Поле	Тип данных	Пояснение
	id	serial (not null)	Порядковый номер
	PLA id	intogor (koy)	Уникальный
	DLA_Iu	Integer (key)	идентификатор
	name_sample	character varying (not null)	Название пробы
	create_date	character varying	Дата отбора пробы
	author	character varying	Пробу отобрал:
	year	integer	Год проведения работ
Catalog_point	lat	double precision	Широта
	lon	double precision	Долгота
	Z	double precision	Высота
	turna na alt	integer	Тип горных пород в
	туре_госк	integer	точке пробоотбора
	dip_azimuth	character varying	Азимут падения
	strike_azimuth	character varying	Азимут простирания
	angle_inc	character varying	Угол падения

В таблице 6 Analytics содержатся данные химического анализа, в графе type_analytics указан метод которым была исследована проба.

Имя таблицы	Поле	Тип данных	Пояснение
	id	serial (not null)	Порядковый номер
	BLA_id	integer (key)	Уникальный
	nomo complo	abarastar yarving (not null)	Иарраниа проби
	name_sample	character varying (not nun)	пазвание прооы
	type analytics	character varving	Метод аналитических
	type_analytics	character varynig	исследований
	Si	double precision	Химический элемент
Analytics	Al	double precision	Химический элемент
	Mg	double precision	Химический элемент
	Ca	double precision	Химический элемент
	Fe	double precision	Химический элемент
	Na	double precision	Химический элемент
	K	double precision	Химический элемент
	(56		
	показателей)		

Таблица 6 Аналитические данные

Таблица 7 содержит результаты подсчета комплексных показателей, которые базируются на таблицах пространственной характеристики и аналитических данных. На основе полученных данных выделяются перспективные участки кварцевого сырья.

Имя таблицы	Поле	Тип данных	Пояснение
	id	serial (not null)	Порядковый номер
	name_sample	character varying (not null)	Название пробы
	lat	double precision	Широта
	lon	double precision	Долгота
	Ζ	double precision	Высота
	sum_rock- forming	double precision	Комплексный показатель
	Al_K	double precision	Комплексный показатель
	Al_Li	double precision	Комплексный показатель
ModuLi	Ca_Mg_Fe_Mn	double precision	Комплексный показатель
	K_Ba	double precision	Комплексный показатель
	LREE/HREE	double precision	Комплексный показатель
	K_Li	double precision	Комплексный показатель
	Rb_Mo	double precision	Комплексный показатель
	Ba_Rb	double precision	Комплексный показатель
	Ce_Ce	double precision	Комплексный показатель
	Sum_K_Na	double precision	Комплексный показатель
	K_Rb	double precision	Комплексный показатель
	Rb Sr	double precision	Комплексный показатель

Таблица 7 Интегральные комплексные показатели

В таблице 8 содержатся данные пространственного расположения канав по

участкам работ.

Таблица 8 Каталог расположения канав

Имя таблицы	Поле	Тип данных	Пояснение
Ditches	id serial (not null)		Порядковый номер
	BLA_id	integer (key)	Уникальный идентификатор
	name_ditches	character varying (not null)	Название пробы

В таблице 9 содержатся изолинии топографических карт. Для лицензионного участка Бурал-Сардык построена карта на основе открытых спутников ASTER и SRTM.

Таблица 9 Изолинии высот рельефа участка работ					
Имя таблицы	Поле	Тип данных	Пояснение		
	id	serial (not null)	Порядковый номер		
Topo_map	BLA_id	integer (key)	Уникальный		
		Integer (key)	идентификатор		
	elevation	character varying	Название пробы		

Физическое представление данных

Для обращения к БД «Сеперкварциты» используется свободно распространяемый программный пакет Quantum GIS. На данный момент база данных состоит из 6 основных слоев с данными (Рис 17).

Рис. 17. Физическое представление БД «Суперкварциты»

1	6 2		j 🗧 🧮 🚺) 😼 📰 🍫 🌶	0 👔 📋 🚺	🖥 li 🔛				🧎 Спра
	id	BLA_id	name_sampl	create_dat	author	year	lon	lat	Z	type_rock
11	374	1	2015-BS-917	2015-07-24T07:	FedorovAM	2015	100.6382669999	52.13697899999	2617.522704999	
12	375	1	2015-BS-918	2015-07-24T07:	FedorovAM	2015	100.6383759999	52.13687900000	2614.247803000	1
13	376	1	2015-BS-919	2015-07-24T08:	FedorovAM	2015	100.6385779999	52.13661400000	2615.732178000	
14	377	1	2015-BS-920	2015-07-24T08:	FedorovAM	2015	100.6381130000	52.13621100000	2632.012207000	
15	378	1	2015-BS-921	2015-07-24T08:	FedorovAM	2015	100.6377059999	52.13551499999	2623.117432000	
.6	379	1	2015-BS-922	2015-07-24T08:	FedorovAM	2015	100.6378639999	52.13628599999	2634.183349999	
.7	381	1	2015-BS-923	2015-07-28T02:	FedorovAM	2015	100.6373109999	52.13957200000	2583.247314000	
.8	382	1	2015-BS-924	2015-07-28T02:	FedorovAM	2015	100.6374249999	52.13965000000	2585.198974999	
9	383	1	2015-BS-925	2015-07-28T03:	FedorovAM	2015	100.6375510000	52.13970799999	2589.471923999	
0	384	1	2015-BS-926	2015-07-28T03:	FedorovAM	2015	100.6378129999	52.13992900000	2592.667480000	
1	385	1	2015-BS-927	2015-07-28T04:	FedorovAM	2015	100.6380649999	52.14010600000	2595.376952999	
2	386	1	2015-BS-928	2015-07-28T04:	FedorovAM	2015	100.6381679999	52.14025600000	2594.326415999	
3	387	1	2015-BS-929	2015-07-28T04:	FedorovAM	2015	100.6383560000	52,14030400000	2591.858886999	
4	388	1	2015-BS-930	2015-07-28T04:	FedorovAM	2015	100.6385650000	52.140479999999	2585.916991999	
5	389	1	2015-BS-931	2015-07-28T04:	FedorovAM	2015	100.6388189999	52.14066900000	2580.123047000	
5	390	1	2015-BS-932	2015-07-28T05:	FedorovAM	2015	100.6392869999	52.14103200000	2578.214844000	
7	391	1	2015-BS-933	2015-07-28T05:	FedorovAM	2015	100.6397769999	52.14133100000	2576.103759999	
8	392	1	2015-BS-934	2015-07-28T06:	FedorovAM	2015	100.6375960000	52.14017299999	2589.080321999	
9	393	1	2015-BS-935	2015-07-28T07:	FedorovAM	2015	100.6373640000	52.14032199999	2583.927001999	
D	394	1	2015-BS-936	2015-07-28T07:	FedorovAM	2015	100.6366560000	52.14063699999	2568.917724999	
	395	1	2015-BS-937	2015-07-28T07:	FedorovAM	2015	100.6366790000	52.14181200000	2542.253905999	

На рисунках 18-20 показано наполнение таблиц данными.

Рис. 18. Таблица Catalog_point

Ø	🗟 🖾 🛱 🔁		- 🔁 🤹	🔎 🗈 🗎 🚺	. 15 🚟				🧎 Справ
	id BLA	_id	name_sampl	type_analy	Si	Al	Mg	Ca	Fe
0	1	1	2010-BS-175	icpms	NUL	59.0000000000	1.40000000000	2.00000000000	6.5000000
1	2	1	2010-BS-176	icpms	NUL	127.000000000	7.20000000000	8.199999999999	43.000000
2	3	1	2010-BS-177	icpms	NUL	11937.00000000	123.000000000	3.00000000000	4166.0000
3	4	1	2010-BS-185	icpms	NUL	44.29999999999	8.90000000000	8.50000000000	8.1000000
4	5	1	2010-BS-186	icpms	NUL	152.000000000	13.6000000000	8.90000000000	17.6999999
5	6	1	2010-BS-187	icpms	NUL	290.000000000	51.6000000000	6.60000000000	20.800000
6	7	1	2010-BS-188	icpms	NUL	26.8000000000	4.30000000000	3.60000000000	21.300000
,	8	1	2010-BS-189	icpms	NUL	164.000000000	36.7000000000	6.60000000000	76.700000
3	9	1	2010-BS-198	icpms	NUL	1395.00000000	195.000000000	4.20000000000	229.00000
,	10	1	2010-BS-227	icpms	NUL	28.0000000000	1.40000000000	2.00000000000	8.300000
10	11	1	2010-BS-228	icpms	NUL	40.0000000000	1.70000000000	1.70000000000	6.0000000
11	12	1	2010-BS-229	icpms	NUL	9.1000000000	0.50000000000	3.50000000000	4.8000000
12	13	1	2010-BS-230	icpms	NUL	45.0000000000	2.60000000000	3.20000000000	12.699999
13	14	1	2010-BS-231	icpms	NUL	22.0000000000	1.90000000000	1.50000000000	5.900000
14	15	1	2010-BS-232	icpms	NUL	50.0000000000	2.70000000000	2.20000000000	6.5000000
15	16	1	2010-BS-233	icpms	NUL	13.0000000000	1.60000000000	3.80000000000	23.000000
16	17	1	2010-BS-237	icpms	NUL	696.000000000	54.0000000000	11.0000000000	200.00000
17	18	1	2010-BS-238	icpms	NUL	5076.00000000	185.000000000	192.000000000	876.00000
18	19	1	2010-BS-239	icpms	NUL	8773.00000000	278.000000000	217.0000000000	611.00000
19	20	1	2010-BS-240	icpms	NUL	3488.00000000	255.000000000	24.0000000000	302.00000
	21	1	2010-BS-293	icpms	NUL	445.0000000000	1551.000000000	3396.000000000	74.000000

Рис. 19. Таблица Analytics

/ 🖶 😂 🗄 👘 🖓 🗮 🖏 🧏 🥸 🗭 🗿 🗳 🧱 🗮 🔰 🏅 Справка												
	id	name_sampl	lon	lat	z	sum_rock-f	Al+K	Al+Li	Ca+Mg+F			
94	95	2015-BS-10	100.6357129999	52.141157999999	NULL	NULL	NULL	NULL	9.19999999			
5	96	2015-BS-12	100.6372259999	52.14106000000	NULL	NULL	NULL	NULL	4.48000000			
6	97	2015-BS-13	100.6370040000	52.141258999999	NULL	NULL	NULL	NULL	7.92000000			
7	98	2015-BS-14	100.6379330000	52.14196599999	NULL	NULL	NULL	NULL	9.27000000			
8	99	2015-BS-3	100.6519619999	52.12169800000	NULL	NULL	NULL	NULL	5652.57200			
9	100	2015-BS-4	100.6381250000	52.13618300000	NULL	NULL	NULL	NULL	5029.31599			
.00	101	2015-BS-5	100.6378940000	52.14020699999	NULL	NULL	NULL	NULL	12.9100000			
.01	102	2015-BS-6	100.6419190000	52.14225199999	NULL	NULL	NULL	NULL	6.19000000			
02	103	2015-BS-7	100.6427970000	52.14249600000	NULL	NULL	NULL	NULL	4.64000000			
.03	104	2015-BS-924	100.6374249999	52.13965000000	NULL	447.6070000000	406.800000000	271.0620000000	28.3150000			
04	105	2015-BS-934	100.6375960000	52.14017299999	NULL	131.6850000000	101.2999999999	71.53499999999	16.3200000			
05	106	2015-BS-939	100.6377630000	52.14119900000	NULL	154.0740000000	119.0999999999	78.53700000000	21.76699999			
06	107	2015-BS-940	100.6382899999	52.14089100000	NULL	978.7899999999	850.8999999999	561.080000000	84.9599999			
.07	108	2015-BS-955	100.6424159999	52.14239200000	NULL	21.98400000000	11.8000000000	9.02200000000	4.81200000			
.08	109	2015-BS-964	100.6381619999	52.14041999999	NULL	379.7599999999	333.1000000000	259.800000000	30.6700000			
.09	110	2015-BS-975	100.6384869999	52.14018000000	NULL	60.6580000000	43.7000000000	34.9200000000	7.71800000			
10	111	2015-BS-998	100.6458420000	52.14243700000	NULL	381.180000000	233.800000000	162.0699999999	107.2099999			
11	112	2015-BS-1009	100.6382360000	52.13972900000	NULL	192.5229999999	156.500000000	113.66599999999	25.4370000			
12	113	2015-BS-1010	100.6345000000	52.12802800000	NULL	324.00999999999	201.1999999999	126.04999999999	101.959999			
13	115	2015-BS-1129	100.6555280000	52.14622200000	NULL	255.9699999999	138.000000000	98.59999999999	109.000000			
		III							F			

Рис. 20. Таблица ModuLi

РАЗДЕЛ 4. ОПТИЧЕСКОЕ КВАРЦЕВОЕ СТЕКЛО И МУЛЬТИКРИСТАЛЛИЧЕСКИЙ КРЕМНИЙ ДЛЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ

Задание 2017 года. Экспериментальные исследования условий выращивания мультикремния. Разработка и создание установки для вакуумно-компрессионного получение оптического кварцевого стекла.

Проведён анализ влияния скорости выращивания слитков мультикремния методом Бриджмена в конфигурации теплового поля с отрицательным градиентом температуры во всём интервале перемещений системы тигель-расплав-кристалл (рис. 21).

Рис. 21. Аксиальный температурный профиль нагревателя (G=34 К/см)

УЭС полученных слитков КРС 77н и КРС 79н варьировалось от 0,75 до 0,68 Ом[•]см в направлении роста. На рис. 22 и 23 показано строение слитков 77н и 79н, по которым видно, что в диапазоне скоростей 3,3-21 мм/ч форма фронта меняется с выпуклой на вогнутую.

Состав исходной загрузки, заданный с помощью навески специального порошка металлургического кремния, показан в табл. 9. В соответствии с понятием равновесного коэффициента распределения, примесь при увеличении доли закристаллизовавшегося

кремния должна либо непрерывно накапливаться в расплаве, либо непрерывно

Рис. 22. Продольная текстура КРС 77н и форма фронта (V=21 мм/ч, G=34 К/см)

Рис. 23. Продольная текстура КРС 79н и форма фронта (V=3,3 мм/ч, G=34 К/см)

захватываться твёрдой фазой, убывая в расплаве. Элементный анализ показывает, что монотонный (а не пилообразный) профиль распределения в слитке образует лишь примесь Ge в микроконцентрациях ~0,01 ppmw.

Мы можем видеть, что высокий градиент теплового поля нагревателя и низкая скорость кристаллизации не всегда оказывают понижающее влияние на величину эффективного коэффициента распределения k_{eff}, за который в табл. 10 принято отношение наименьшей обнаруженной концентрации примеси в слитке к концентрации её в исходном сырье

					ke	ff	
				КРС 69н	КРС 71н	КРС 77н	КРС
	C			(V=5	(V=0,7	(V=21	79н
Элемент	$C_0,$	C _{sol} , ppmw	C_{sol}/C_0	мм/ч,	мм/ч,	мм/ч,	(V=3,3
	ppmw			G=5	G=5	G=34	мм/ч,
				К/см)	К/см)	К/см)	G=34
							К/см)
Fe	7,82	0,7 (1623 К)	0,09	0,02	0,02	0,17	0,11
Ni	0,29	0,52 (1553 K)	1,79	0,04	0,008	0,021	0,017
V	0,3	0,01 (1673 K)	0,043	0,0015	0,0005	0,0037	0,0047
Ge	0,01	-	-	0,53	0,57	0,65	0,62
Mn	0,06	0,78 (1543 K)	13	0,01	0,035	0,133	0,133
Со	0,17	1,9 (1553 К)	11,18	0,001	0,001	0,0053	0,0059
Al	1,77	650 (1493 K)	364,2	0,32	0,12	0,43	0,51
Mg	1,22	303 (1403 К)	248,4	0,44	0,082	0,26	0,197
Cr	0,051	0,28 (1613 K)	5,49	0,2	0,1	0,9	0,69

Табл. 10. Концентрация некоторых элементов в исходной загрузке для выращивания слитков

Примечание: Со, предельные растворимости примесей в кремнии Csol (при температуре предельной растворимости), эффективные коэффициенты распределения примесей при выращивании mc-Si (в скобках скорость кристаллизации и градиент температуры).

Для дополнительной характеризации распределения примесей в слитках был применён корреляционный анализ Спирмена. Значения коэффициентов корреляции (табл. 11) указывают на то, что распределение отдельных пар элементов в слитке, выращенном с

Табл. 11. Коэ	ффициенты корреляции С	пирмена некоторых пар	о примесей при их								
распределении	в КРС 77н и КРС 79н										
КРС 79н (V=3,3 мм/ч, G=34 К/см) КРС 77н (V=21 мм/ч, G=34 К/см)											
Na-Mg	0,8424	Na-Mg	0,9636								
Na-Ca	0,8424	Na-Ca	0,8545								
Mg-P	0,8424	Mg-P	-0,8424								
Mg-Ge	0,8787	Mg-Ge	-0,7454								
P-Ca	0,8424	P-Ca	-0,9030								
P-Ge	0,9636	P-Ge	0,9757								
K-Zn	0,6363	K-Zn	0,7575								
Ca-Ge	0,8787	Ca-Ge	-0,8686								
Ti-Ge	0,7333	Ti-Ge	-0,6322								
Fe-Mn	0,6848	Fe-Mn	0,6484								
Fe-Co	0,6606	Fe-Co	0,8424								

более высокой скоростью, находится в обратной корреляционной зависимости друг от друга. Связано это, видимо, с элементами Р и Ge, объединяет которые примерное равенство их равновесных коэффициентов распределения (0,35 и 0,33).

На рис. 24 показано распределение значений эффективного времени жизни неравновесных носителей заряда по высоте кристаллов 77н и 79н.

Рис. 24. Распределение эффективного $\tau_{\text{ннз}}$ по высоте слитков КРС 77н (V=21 мм/ч) и КРС 79н (3,3 мм/ч)

В данном случае низкая скорость кристаллизации обеспечила большие значения времени жизни $\tau_{\text{ннз}}$ в средней части кристалла, что свидетельствует либо о более глубокой кристаллизационной очистке (но об этом не свидетельствует содержание примесей в средней части), либо о рекомбинационно-неактивной форме вхождения примесей в кристалл (преципитация примесей).

В аналогичных условиях выращивания слитков 77н и 79н, были получены слиткиспутники 78н и 80н, соответственно (рис. 25). При получении всех 4 слитков, легирующие компоненты располагались на дне тигля. Для 78н и 80н это были – навеска лигатуры бора и кристаллический Ge (С_{исх}=762 ppmw). На рис. 26 показано распределение удельного сопротивления (УЭС) по высоте слитков 78н и 80н.

По профилю распределения УЭС слитка 78н мы можем косвенно судить о неполной гомогенизации в заданной конфигурации теплового поля (рис. 21) в течение 80 мин. расплава, содержащем примесь В. На рис. 27 о неравномерности распределения примеси Ge в расплаве также говорит профиль его распределения в слитке.

Элементный анализ слитков 77н и 79н, а также рис 27. говорят о том, что на монотонность распределения примеси Ge существенно влияет его концентрация в расплаве (профиль Пфанна - пример монотонного профиля). Рис. 28 показывает, что из слитков 78н и 80н время жизни ННЗ в данном случае больше у того, у которого скорость кристаллизации была выше.

Рис. 25. Продольная текстура КРС 78н (слева, V=21 мм/ч) и КРС 80н (справа, V=3,3 мм/ч)

Рис. 26. Распределение УЭС в слитках КРС 78н (V=21 мм/ч) и КРС 80н (3,3 мм/ч)

Рис. 27. Распределение Ge в слитках КРС 78н (V=21 мм/ч) и КРС 80н (3,3 мм/ч) на основе данных ICP MS и АЭА (keff=0,55)

Рис. 28. Распределение эффективного времени жизни ННЗ в слитках КРС 78н (V=21 мм/ч) и КРС 80н (3,3 мм/ч)

Исследованы электрические и структурные свойства специальных границ зёрен в мультикристаллическом кремнии. Применение методов наведённого тока, индуцированного электронным и лазерным пучками, для исследования распределения пространственной рекомбинации неравновесных носителей заряда (ННЗ) позволило выявить особенности проявления рекомбинационной активности различными типами специальных границ зёрен ($\sum 3$, $\sum 9$, $\sum 15$, $\sum 27a$ и $\sum 27b$). При помощи методов электронной сканирующей микроскопии в совокупности с методиками селективного кислотного и щелочного травления были исследованы структурные свойства границ зёрен с нетипично высокой рекомбинационной активностью. Такие границы, как правило, присутствуют в областях с низкими значениями времени жизни ННЗ, измеряемом бесконтактным СВЧрезонаторным методом. Как видно из данных таблицы 12, характер распределения значений удельного электрического распределения (УЭС) и времени жизни (τ) ННЗ в слитках заметно различается: если величина УЭС плавно варьируется по высоте всех исследуемых кристаллов, то значение τ ННЗ претерпевает резкие изменения. Особенно хорошо это заметно в образце Крс3, где наблюдаются самые высокие усреднённые показатели УЭС и τ ННЗ. Среди оставшихся кристаллов наиболее высокие усреднённые значения УЭС наблюдаются в Крс4, а τ ННЗ в Крс2. Особый интерес представляли факторы, ответственные за характер распределения значений τ ННЗ в кристаллах. Поэтому были осуществлены дальнейшие измерения по поверхности образцов, вырезанных из нижней (Н) и верхней (В) частей каждого слитка.

CJIII I Ku													
F (см)	0,05	0,15	0,25	0,35	0,45	0,55	0,65	0,75	0,85	0,95	Сред. знач.	
Kpc1	ρ, Ом*см	0,23	0,22	0,22	0,22	0,22	0,26	0,23	0,19	0,18	0,17	0,21	
1	τ, мкс	2,53	2,06	2	2,23	2,03	2,2	2,6	1,93	1,93	2,03	2,15	
Крс2	ρ, Ом*см	0,67	0,66	0,66	0,65	0,63	0,6	0,56	0,53	0,5	0,46	0,59	
I.	τ, мкс	3,1	2,7	3,5	3,4	3,2	3,1	2,4	2,4	2,3	3,1	2,92	
Крс3	ρ, Ом*см	1,6	1,7	1,8	1,8	1,73	1,67	1,62	1,79	2,25	2,61	1,85	
1	τ, мкс	3,8	3,7	3,5	4	5,3	44	19,3	12,9	9,26	6,73	11,25	
Крс4	р, Ом*см	0,8	0,77	0,72	0,7	0,68	0,66	0,64	0,62	0,6	0,55	0,67	
1	τ, мкс	1,17	0,8	0,9	1,17	0,96	0,92	0,93	0,73	1,15	1,12	0,98	

Таблица 12. Электрофизические параметры слитков мультикремния, измеренные от дна слитка вдоль оси роста по всей высоте (F, см).

На рис.29 представлено схематическое изображение областей измерения т ННЗ на поверхности образцов Крс1, Крс 2, Крс3 и Крс4.

1	Kpcl(H)			Kpc1(E	B)		Kpc2(I	I)	Kpc2(B)			
0.5	2.3	1.5	1.2	1.6	1.5	1.02	1.15	1.03	1.35	1.3	1.4	
1.1	2.1	0.9	1.06	1.4	1.3	0.97	0.8	1	2	0.75	1.4	
1	2.5	1.05	1.17	0.6	1.8	1.14	1.7	1.2	1.4	1.1	1.2	
1.5	1.1	1.86	1.36	1.2	1.4	1.3	1.3	1	1.8	1	1.1	
)	Крс3(Н	I)	1	Крс3(І	B)	2	Крс4(Н	I)		Крс4(І	3)	
1.8	1.3	3.3	1.3	3.8	7.1	1	1.23	1.2	1.1	0.95	1.2	
0.8	1.1	4.3	0.8	2.8	8	1.2	1.4	1.9	0.9	1.2	1.15	
1	0.87	3.5	1	0.8	1.1	1.9	1	1.2	1.15	1.1	0.8	
3.17	0.81	2.7	9	26.5	2.2	1.6	1.2	1.35	0.76	1.4	II	

Рис. 29. Карты распределения т ННЗ (мкс) по поверхности образцов (значения т ННЗ, перпендикулярной оси роста слитков мультикремния.

Для дальнейших исследований были выбраны образцы Крс 2(В) и Крс 3(В) с более высокими значениями τ ННЗ. Помимо этого, в образце Крс3 (В) были зафиксированы аномально высокие значения τ ННЗ (26,5 и 9 мкс) на двух соседних участках образца (Рис. 29). Для установления основных причин снижения параметра τ ННЗ были проведены исследования пространственного распределения электрической активности по всей площади поверхности образцов Крс 2(В) и Крс 3(В). Затем образцы подвергались селективному химическому травлению для выявления тонкой структуры поверхности и электрически активных дефектов. Полученные результаты отображены на рис. 30.

Рис. 30. Изображения секторов: а, б, в, г – РЭМ изображения (BEI) травленой поверхности фрагментов секторов Крс 3(В) 1/1, 2/1, 3/2 и 4/1 соответственно (цифрами 1-8 обозначены микровключения); д, е, ж, з – ЕВІС изображения фрагментов секторов 1/1, 2/1, 2/2 и 4/1.

Межзёренная граница из сектора 1/1, как видно на изображении (рис. 30 а, д) является электрически активной и после травления представляет собой выпуклую линию, вдоль которой располагаются микровключения (1-3 на рис. 30 а) и ямки травления. Причем, если ямки травления с одинаковой вероятностью встречаются как в плоскости границы, так и в зерне, то микровключения располагаются преимущественно по линии границы. Несмотря на то, что границы в секторе 4/1 частично или целиком проявляют электрическую активность, значение т HH3 в данном секторе является высоким по сравнению с секторами 1/1, 2/1 и 3/2. Наибольший контраст ЕВІС в данном секторе проявляют специальные границы с повышенным содержанием ямок травления по сравнению с близлежащими областями зёрен (рис. 30 г, з). Как видно по результатам исследований EBIC поверхности Крс 2(В), лишь малая часть межзёренных границ являются электрически активными (рис. 31 б, е). Если учесть, что на изображениях РСМА данных фрагментов наблюдается множество межзёренных границ, электрическую активность проявляют только границы определенного вида (они имеют изогнутые контуры и в них наблюдается высокое содержание ямок травления, а также отчетливо видны отличия их строения от соседних, электрически неактивных границ). Изогнутые границы являются границами со случайной ориентацией, и их контраст всегда больше, чем контраст специальных границ.

Рис. 31. а – изображение РЭМ (ВЕІ) травленой поверхности фрагмента сектора 1/3 Крс 2(В); б – изображение ЕВІС поверхности сектора 1/3 Крс 2(В); в, г – изображение РЭМ травленой поверхности выделенных на (а) фрагментов 1 и 2, соответственно; д – изображение РЭМ (ВЕІ) травленой поверхности сектора 2/3 Крс 2(В), е – изображение ЕВІС поверхности сектора 2/3 Крс 2(В), е – изображение ЕВІС поверхности сектора 2/3 Крс 2(В).

Результаты исследований пространственного распределения рекомбинационной активности границ зёрен и протяженных дефектов в мультикремнии показали, что для достижения оптимальных электрофизических характеристик данного материала недостаточно руководствоваться одними параметрами макроструктуры, такими как плотность границ зёрен в единицу объема слитка или направленность кристаллитов. формирования Важную роль В процессах макрои микроструктуры играют присутствующие в исходном металлургическом кремнии примеси. В зависимости от их концентрации и соотношений элементов, происходит формирование микровключений определенных типов и составов. Установлено, что вторичные микровключения оказывают на рекомбинационную активность существенное влияние дефектов структуры (дислокаций, границ зёрен) и в большей степени ответственны за снижение объемных электрофизических характеристик мультикремния, чем дефекты с более высокой плотностью распределения без микровключений.

Оптическое кварцевое стекло

Приводимые в отчете результаты основываются на детальном изучении 4 разновидностей кварцитов, отобранных на северном (месторождение Бурал-Сардык) и юго-западном участках Ока-Урикского блока, исходных кварцитов Уренгенурского блока и гранулированного кварца Анахчи-Чипикетского жильного поля Патомского нагорья (жила 2821). Пространственно, Гарганский кварцитоносный район находится в юговосточной части Восточного Саяна, в северном секторе Тувино-Монгольского массива (Гарганская глыба). Фундамент глыбы перекрыт осадочным чехлом, основание которого сложено рифейскими (2.5 млрд. лет) кремнисто-карбонатыми отложениями иркутной свиты, являющимися продуктивными на высокочистые кварциты. Отложения осадочного чехла прорываются гранитоидными интрузиями сумсунурского комплекса плагиогранитов (790 млн лет), которые располагаются к юго-западу от Ока-Урикского блока. Всего в пределах этого блока по пространственному положению и вещественному составу каврцитов выделено 6 рудоносных участков. Наиболее детально изучен Северный участок данного блока, который получил название «месторождение Бурал-Сардык». Он расположен на северном склоне горы Бурал-Сардык, на высотных отметках 2600-2670 м. Бурением скважин, выполненных при разведке месторождения, установлено, что продуктивные тела «суперкварцитов» и подстилающих их осветленных мелкозернистых кварцитов имеют пластовую форму и пологое падение в направлении на запад-северозапад. При этом мощность пласта мелкозернистых кварцитов в целом колеблется от 8 до

14 метров, «суперкварцитов» - от 6 до 12 метров. На этом участке нами отобраны пробы суперкварцитов и мелкозернистых кварцитов (рис 32а, б).

Рис.32. Образцы кварцевого материала: а- суперкварциты, б-мелкозернистый кварцит, всливной, г-крупнозернистый кварцит северо-восточного участка, д – кварциты участка Уренгенур, е-гранулированный кварц Анахчи-Чипикетской группы жил.

На юго-западном участке отобраны образцы сливного кварцита (рис 32в) и на северо-восточном участке образцы крупнозернистого кварцита (рис 32 г) подобного суперкварцитам северного участка.

Проявление Уренгенурское расположено в южном секторе Гарганской глыбы, на левобережье р. Оки, где обнажаются карбонатно-кремнистые ритмично-полосчатые отложения иркутной свиты. Данные образования представляют собой моноклинально залегающую в направлении C3 320-340°, с углами падения 7-10°, толщу, разбитую системой субвертикальных разрывных нарушений разного масштаба. Истинная мощность карбонатно-кремнистой пачки составляет около 200 м. На запад они сменяются известняками, которые прорываются интрузивными телами барунхолбинского и мункусардыкского комплексов. Образец кварцита с этого участка представлен на рисунке 32 д.

Кроме того, для целей сравнения минерального и химического составов кварцитов Гарганского кварцитоносного района, в данной работе представлены результаты исследований образцов гранулированного кварца жилы 2821, отобранных на Анахчи-Чипикетском жильном поле Патомского нагорья (рис.32е). Анахчи-Чипикетская группа жил выделяется среди существенно терригенных осадочных пород неопротерозойского возраста, относимых к Патомской серии. Жильные тела залегают согласно с падением вмещающих пород и выделяются в виде линзообразных тел и развалов на площади более 50 км². Размеры линз варьируют в пределах от нескольких до 200 и более метров по простиранию и до 5-7 метров по мощности в раздувах. Всего в пределах Анахчи-Чипикетской группы жил выделяется более 100 тел, выполненных кварцем трех основных геолого-промышленных типов: гранулированным, прозрачным стекловидным и белым непрозрачным. Наибольший практический интерес представляют гранулированные прозрачные разновидности кварца вследствие того, что они процессе В перекристаллизации испытали освобождение от структурных примесей, минеральных и

флюидных включений. Наиболее изученной в пределах поля является жила 2821, по которой балансовые запасы составляют 32,8 тыс. т.

Фотографии образцов всех 6 типов кварцевого сырья приведены на рисунке 32.

В таблице 13 приведены массовые доли примесей в исходных образцах кварцевого материала. Элементный состав примесей определялся методом масс-спектрометрии с индуктивно связанной плазмой.

Тип кварца	Fe	Al	Ti	Ca	Mg	Cu	Mn	Na	K	Li	Σ10
Суперкварцит	6	27	1,7	0,8	1	0,17	0,02	3,5	6,3	0,13	46,6
Мелкозернистый	7,1	65,9	2,4	4,6	4,4	0,16	0,09	5,9	23,9	0,14	115
Сливной	4,9	10,4	0,3	7,3	0,9	0,2	0,1	19,3	6,2	0,3	50
Крупнозернистый северо-восточного	5,08	62,6	1,5	2,7	3	0,06	0,01	4,1	24	0,04	103
участка											
Уренгенур	13,8	234	17,5	186	51	0,1	0,9	6,8	124	0,1	634
Гранулированный кварц жилы 2821	2,9	23,9	1,8	0,3	0,4	0,01	0,01	1,9	4	1,4	37

Таблица 13. Массовые доли примесей в исходных образцах, ppm.

Химическое обогащение (ХО) исходной кварцевой крупки проводилось в смеси кислот 20% HCI:10%HF при соотношении жидкого к твердому (Ж/Т) 2:1, сушка кварцевой крупки при температуре 120 0 С в вакуумном сушильном шкафу. Содержание примесей в кварцевых концентратах всех типов обогащенных образцов кварцевого материала приведено в таблице 14. Из анализа таблицы видно, что наиболее легко обогащается суперкварцит. Следует отметить лишь сравнительно высокую концентрацию натрия, для удаления которого нужны специальные процедуры. Гранулированный кварц жилы 2821,

Таблица 14. Массовые доли примесей в кварцевых концентратах после ХО, ppm													
Тип кварца	Fe	Al	Ti	Ca	Mg	Cu	Mn	Na	K	Li	Σ10		
Суперкварцит	0,9	4,5	0,8	0,7	0,2	0,14	0,005	2,5	0,5	0,12	10,4		
Мелкозернистый 0,6 9,3 1,1 1,3 1,3 0,12 0,004 4 2,3 0,14 20,2													
Сливной 0,7 7,3 0,4 5,6 0,4 0,2 0,07 20,9 3,6 0,4 40													
Крупнозернистый северо-восточного участка	1,6	9,9	0,8	2,1	0,6	0,04	0,004	1,8	2,5	0,02	19,9		
Уренгенур	1,1	12,9	5,1	18,6	2,8	0,1	0,1	2,9	2,6	0,1	46		
Гранулированный кварц жилы 2821 0,5 13,6 1,8 0,5 0,1 0,01 0,003 1,5 0,3 1,4											20		

мелкозернистый кварцит месторождения Бурал-Сардык и крупнозернистый северовосточного участка имеют после обогащения суммарное содержание 10 регламентированных примесей порядка 20 ppm, что соответствует характеристикам кварцевых концентратов глубокого обогащения. Существенно отличаются результаты

обогащения сливного и уренгенурского образцов. Из сравнения таблицы 13 и 14 видно, что при стандартной схеме обогащения в сливном кварците остается практически неизменной концентрация натрия. Учитывая то, что этот тип кварцевого материала обладает высоким содержанием высокотемпературной воды следует предположить, что основная часть натрия находится во флюидных включениях. Следовательно, для удаления натрия необходимо проводить высокотемпературную прокалку материала для вскрытия флюидных включений. Обогащенный кварцевый концентрат уренгенурского образца характеризуется высоким содержанием кальция и сравнительно высоким содержанием магния. Это связано с тем, что основными минеральными включениями в этом типе материала являются карбонаты. Следовательно, для удаления карбонатов необходима предварительная обработка кварцевой крупки соляной кислотой, в которой легко растворяются карбонаты. Для проверки этих предположений нами проведены следующие процедуры. Кварцевая крупка сливного кварцита была прокалена в вакууме при температуре 1450[°]С в течение трех часов и после этого проведена стандартная процедура ХО. Результаты анализа содержания примесей после этих процедур приведены в таблице 15.

Таблица	15.	Массовые	доли	примесей	В	кварцевых	концентратах	после	дополните	льной
обработк	ии	XO, ppm								

Тип кварца	Fe	Al	Ti	Ca	Mg	Cu	Mn	Na	Κ	Li	Σ10
Суперкварцит*	0,6	3,9	0,6	0,7	0,2	0,03	0,002	2,5	0,5	0,1	9,1
Сливной**	8,9	9,9	0,3	2,9	0,8	0,18	0,07	1,7	1,7	0,4	27
Сливной***	6,9	5,3	0,2	2	0,5	0,11	0,05	1,1	0,9	0,4	17
Уренгенур****	3,5	11,1	1,8	1,7	1,4	0,08	0,06	2,8	1,9	0,1	24

Примечания: *Двойное термодробление, ХО 20%HCl:20%HF; **Прокалка кварцевой крупки сливного кварцита проведена в вакууме при температуре 1450⁰С в течении трех часов;***ХО после прокалки; ****Перед химическим обогащением проведена обработка кварцевой крупки Уренгенурского кварцита соляной кислотой в течении трех часов.

Как видно из таблицы 15, только прокалка приводит к резкому уменьшению содержания натрия, а дальнейшее ХО приводит к уменьшению концентрации всех остальных примесей и дает возможность на этом типе материала получить кварцевые концентраты сверх - глубокого обогащения. Кварцевая крупка уренгенурского кварцита вначале подвергалась травлению в течении трех часов в соляной кислоте, а затем проводилось стандартное обогащение. Результаты по кварцевому концентрату практически идентичны как для уренгенурского, так и для сливного кварцитов. Для более глубокого обогащения суперкварцита проведено двойное термодробления с использованием деионизированной воды и ХО в смеси кислот 20%HCl:20%HF. В результате полученный концентрат соответствует уровню сверх глубокого обогащения.

Для получения оптического кварцевого стекла нами разработана эскизная документация вакуумно-компрессионной установки, которая будет позволять проводить плавку стекла при максимальных параметрах: вакуум 10⁻² Па, давление 25 бар. Кварцевые стекла получали на модернизированной установке для выращивания монокристаллов «ОКБ-8093» методом вакуумно-компрессионной плавки при максимальном давлении до 6 бар. Нагреватель резистивного типа, элементы теплового узла и тигель изготовлены из графита. Температурный контроль осуществлялся ВР-термопарой и электронным пирометром. Кварцевые концентраты засыпались в графитовый тигель, после чего камера установки откачивалась форвакуумным и диффузионным насосами. После сушки сырья при температуре около 150 °C в течении нескольких часов, температура повышалась. При падении вакуума в ходе повышения температуры, делались временные выдержки для его восстановления, после чего запускалась программа повышения температуры со скоростью около 300 °С/час до момента плавления. При достижении температуры плавления кварца делался перегрев приблизительно на 100 °C, и камера заполнялась аргоном до 6 бар со стабильной поддержкой заданной температуры. Расплав выдерживался под этим давлением в течении 1 часа, после чего нагрев выключался. При таком режиме плавки потеря массы составляет 10÷20 %. В результате применения выбранного режима были получены прозрачные бесцветные образцы кварцевого стекла, без видимых пузырей.

Из всех типов обогащенных кварцевых концентратов методом вакуумнокомпрессионной плавки в графитовых тиглях при давлении 5 бар получены образцы кварцевых стекол. Спектры поглощения кварцевых стекол приведены на рисунке 33. Спектры поглощения прозрачных отполированных плоскопараллельных пластинок из кварцевого стекла

Рис.33. Спектры поглощения кварцевых стекол из различных типов кварцевых концентратов: 1 (штриховой пунктир) – мелкозернистый кварцит, 2 (точечный пунктир) – гранулированный кварц Чипикет, 3 (сплошная линия) – суперкварцит.

толщиной от 1,5 до 3,5 мм измерялись на двухлучевом спектрофотометре Perkin Elmer Lambda 950 в спектральном диапазоне от 190 до 2500 нм, а в ИК диапазоне от 2500 до 3500 нм измерялись на ИК-Фурье спектрометре Varian Excalibur FTIR. Полученные спектры корректировались на отражение согласно формуле Френеля для нормально падающего луча. Из анализа рисунков видно, что все полученные стекла характеризуются высоким светопропусканием в широкой области спектра и соответствуют параметрам так называемого «сухого» стекла марки КИ. В спектрах поглощения полученных образцов в области 2700-2800 нм отсутствует полоса, связанная с поглощением ОН групп. Максимальной прозрачностью обладают стекла, полученные на основе кварцевых концентратов из суперкварцитов.

Эти концентраты обладают максимальной чистотой (см. табл.13) и как следствие минимальным количеством светорассеивающих мелких пузырей. Подъем пъедестала спектра поглощения для других стекол определяется большей степенью «пузырности». Стекло, полученное из мелкозернистого кварцита имеет максимальное количество газовых пузырей и как следствие максимально высокий пъедестал нулевой линии в

спектре поглощения. Спектры поглощения стекол, полученных из кварцевых концентратов на основе уренгенурского, сливного и крупнозернистого кварцита северовосточного участка идентичны кривой 2 и поэтому в отчете не приводятся. Повышение давления компрессии до 25 бар должно привести к полному удалению газовых пузырей и, следовательно, к понижению нулевой линии спектра поглощения всех типов стекол.

Одной из важнейших характеристик кварцевого стекла, используемого для изготовления термостойкой кварцевой керамики, является его устойчивость к термические характеристики кристаллизации. Были изучены полученных ИЗ суперкварцитов стекол. Испытания на устойчивость к кристаллизации проводились согласно следующей схеме: кварцевые пластинки нагревались в муфельной печи на воздухе на кварцевой подложке до температуры 1000-1250 °C со скоростью 180 °C/час. При температурах от 1000 до 1250 °С через каждые 50 °С делалась выдержка 2 часа, после чего пластинки охлаждались со скоростью 300 °С/час. В качестве методов контроля кристаллизации использовались визуальное наблюдение, фоторегистрация внешнего вида пластинок до и после испытаний и рентгенофазовый анализ. По результатам визуального наблюдения показано, что на поверхности стекол, изготовленных на основе кварцевых концентратов из суперкварцита и кристобалитизированного мелкозернистого кварцита при выдержке 2 часа при

температуре 1200 °С не наблюдается кристаллизации – поверхность пластинки остается прозрачной без видимого помутнения. Тем не менее, рентгенофазовый анализ показывает, что образование кристобалита начинается при температуре 1150 °С и усиливается при 1200 °С в стеклах, полученных из кварцевых концентратов суперкварцита (рис. 34) и

Рис. 34. Рентгеновские дифрактограммы кварцевого стекла, полученного из крупки суперкварцита в процессе термических испытаний при 1150 и 1200 °С.

кристобалитизированного мелкозернистого кварцита. По-видимому, для более точной оценки устойчивости кварцевого стекла к кристаллизации необходимо использовать ренгенофазовый анализ поверхности дополнительно к визуальному контролю.

ЗАКЛЮЧЕНИЕ

Методами оптической и магниторезонасной спектроскопии изучены процессы с изменением валентности редкоземельных примесных ионов и структура созданных дефектов в кристаллах CaF₂, SrF₂, BaF₂ и BaBrI, BaClI.

После радиационного окрашивания при 80 К кристаллов CaF_2 , SrF_2 , BaF_2 , активированных трехвалентными лантаноидами, наблюдаются образование двухвалентных ионов Sm, Ho, Pr, а также дырочных V_k- центров. При нагревании кристалла наблюдается спад поглощения в области 3.9 эВ, обусловленный разрушением V_k-центров. После нагрева до 273К в спектрах поглощения остаются большая часть двухвалентных ионов Sm, Ho.

В кристаллах SrBrI и BaBrI на основе измерения температурных зависимостей тушения 5d-4f люминесценции ионов европия при внутрицентровом возбуждении оценен энергетический барьер термического тушения 5d-4f свечения ионов Eu²⁺. В кристаллах BaBrI-Eu он составляет 0.57±0.04 эB, в кристаллах SrBrI-Eu 0.84±0.03 эB.

Методами квантовой химии твердого тела были исследованы редкоземельные примесные центры и собственные дефекты в кристаллах LaF₃, а именно примесный ион Sm^{2+} , анионные вакансии, F-центры и V_k-центры. Использовались три метода расчета – высокоточный многоконфигурационный метод CASSCF с учетом скалярных релятивистских поправок и спин-орбитального взаимодействия, метод встроенного кластера в сочетании с функционалом плотности ВННLYP и периодический расчет функционалом PBE в базисе плоских волн. Установлено, что зарядовым компенсатором для редкоземельного иона Sm^{2+} выступает ближайшая к нему анионная вакансия в F2-подрешётке кристалла LaF₃. Наблюдаемая в экспериментальном спектре поглощения полоса на 16600 см⁻¹ согласуется с переходами электронов с редкоземельного центра Sm^{2+} на 1s орбиталь вакансий.

В сливных кварцитах Юго-Западного участка (пробы 880, SW 1 и SW 2) изменений изотопного состава ¹⁸О не отмечается, что указывает на перекристаллизацию кварцитов без влияния эндогенного флюида. Перекристаллизация с выносом вещества из сахаровидных кварцитов из оторочки образца со снижением 10 нормируемых элементов-примесей на 25-30% происходит в процессе динамометаморфогенного или механохимического преобразования за счет собственного флюида.

При низкой скорости кристаллизации получены образцы мультикремния с высокими значениями времени жизни неосновных носителей, что очень важно для солнечной энергетики.

Разработана эскизная документация вакуумно-компрессионной установки для получения кварцевого стекла.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Dorenbos P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds [Текст] // Journal of Physics: Condensed Matter. 2003,15(17), 2645

2. П.А. Родный, И.В. Ходюк, Г.Б. Стрыганюк Энергетическое положение редкоземельных ионов в BaF2 и CdF2 [Текст]// Физика твердого тела, 2008, 50, 1578-1581

3. Dorenbos P. Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds // Journal of Physics: Condensed Matter. 2005, 17(50), 8103

4. A.V. Egranov, T.Yu. Sizova, R.Yu. Shendrik and N.A. Smirnova Instability of some divalent rare earth ions and photochromic effect [Teκct]// Journal of Physics and Chemistry of Solids, 2016, Vol. 90, pp. 7-15 (http://dx.doi.org/10.1016/j.jpcs.2015.11.007)

5. Воробьев Е. И., Спиридонов А. М., Непомнящих А.И., Кузьмин М.И. Сверхчистые кварциты Восточного Саяна (Республика Бурятия, Россия) [Текст] // ДАН. 2003. Т. 390. № 2. С. 219–223.

6. Федоров А. М., Макрыгина В. А., Будяк А. Е., Непомнящих А. И. Новые данные о геохимии и механизме формирования кварцитов месторождения Бурал-Сарьдаг (Во-сточный Саян) [Текст] // ДАН, 2012. Т. 442. № 2 С. 244–249.

7. Taylor H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. [Τεκcτ]// Economic Geology 1974. 69:843-883

8. Faure G. [Текст] //Principles of isotope geology. Second edition. John Wiley&Sons, 1986. New York, NY, USA

9. Savin S.M., Epstein S. The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. [Tekct] // Geochim. et Cosmochim. Acta 1970. 34: 43-63

10. Karhu J., Epstein S. // Hidrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. et Cosmochim. Acta 1986. 40:1095-1108

11. Sharp Z.D., Durakiewicz T., Migaszewski Z.M., Atudorei V.N. [Текст] //Antiphase hidrogen and oxygen isotope periodicity in chert nodules. Geochim. et Cosmochim. Acta 2002. 66:2865-2873

12. Bindeman I.N., Bekker A., Zakharov D.O. [Teĸct] //Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth and Planetary Science Letters 2016. 437:101–113

ПРИЛОЖЕНИЕ А

Список статей за 2017 год по теме

1. А.И. Непомнящих, Т.В. Демина, А.П.Жабоедов, И.А.Елисеев, П.А.Лесников, А.К.Лесников, А.С.Паклин , В.С.Романов, А.Н.Сапожников, Ю.В.Сокольникова, А.М.Федоров, А.А.Шалаев, Р.Ю.Шендрик. Оптическое кварцевое стекло на основе «суперкварцитов» Восточного Саяна./ /Физика и химия стекла. 2017. Т.З. №3. Стр. 288-295

2. А.Е. Раджабов, А.В. Егранов, Р.Ю. Шендрик .Образование водородных Нацентров при аддитивном окрашивании кристаллов щелочно-земельных фторидов //Оптика и спектроскопия, 2017,122 №6, С.939-944

3. М. Г. Волкова, А. И. Непомнящих, А. М. Федоров, А.М. Махлянова, Н. В. Брянский, ФЛЮИДНЫЕ ВКЛЮЧЕНИЯ В «СУПЕРКВАРЦИТАХ» МЕСТОРОЖДЕНИЯ БУРАЛ-САРДЫК (ВОСТОЧНЫЙ САЯН) // Геология и геофизика, 2017, том 58, № 9, стр. 1324-1331

4. R. Shendrik, A. Myasnikova, A. Shalaev, A. Bogdanov, E. Kaneva, A. Rusakov, A. Vasilkovskyi. Optical and structural properties of Eu2+ doped BaBrI and BaClI crystals/Journal of Luminescence//2017, 192, p.653-660

5. A. Bogdanov, A. Mysovsky, C. Pickard, A. V. Kimmel Multiphase modelling of Pb(Zr1-xTix)O3 structure // Ferroelectrics, 2017, v. 520(1), pp.1-9

6. Раджабов Е.А., Самборский А."Двухвалентные редкоземельные ионы в кристаллах LaF3", / Известия РАН, 2017, Том 81, № 9, 1173-1177

7. А.В. Егранов, Т.Ю. Сизова, В.В. Козловский/"Неустойчивость одновалентных ионов переходных металлов в щелочноземельных фторидах: CaF2 и SrF2, активированные Co2+ или Ni2+"/ Известия РАН, 2017, Том 81, № 9,1187-1192

8. А.И. Богданов, А.С. Мысовский, А.V. Kimmel. Теоретическое исследование струтуры цирконата-титаната свинца. / Известия РАН, 2017, Том 81, № 9. 1193-1197

9. А.С. Мясникова, А.О. Васильковкий, А.И. Богданов, Р.Ю. Шендрик, Е.В. Канева и А.А. Шалаев."Сцинтилляторы на основе дигалоидов бария, активированных ионами Eu2+"/ Известия РАН, 2017, Том 81, № 9.,1205-1209

10. Т.Ю. Сизова, В.Ю. Веслополова, Р.Ю. Шендрик, А.В. Егранов Е.А. Раджабов, А.А. Шалаев "Двухвалентные редкоземельные ионы: Pr, Sm, Ho, Er, Tm, Yb в кристаллах щелочноземельных фторидов". / Известия РАН, 2017, Том 81, № 9, 1210-1214

 Жабоедов А.П., Непомнящих А.И., Соломеин О.Н. "Кварцевые концентраты из кварцитов Восточного Саяна", / Известия РАН, 2017, Том 81, № 9. 1232-1237

12. Н.В.Попов, А. С. Мысовский, Н.Г.Чуклина, Е.А.Раджабов. Теоретическое исследование дефектов двухвалентного самария в кристаллах фторида лантана. / Известия РАН, 2017, Том 81, № 9. 1269-1273

13. М.Ю.Юрьев, А.С.Мысовский "Теоретическое исследование пространственного строения, электронных и оптических свойств углеродных тороидальных наноструктур" // Известия РАН серия физическая 2017, Том 81, №10,1403-1409

14. Н.Г.Чуклина, А.С.Мысовский "Исследование автолокализованной дырки и экситона в кристалле фторида кальция методом молекулярной динамики из первых принципов" // Известия РАН серия физическая 2017, Том 81, №10, 1419-1422