Логотип Институт геохимии РАН
Федеральное государственное бюджетное учреждение науки
Институт геохимии им. А.П. Виноградова
Сибирского отделения Российской академии наук
664033 г. Иркутск, ул. Фаворского, стр.1А +7(3952)546401
  • Русский (РУС)
  • English (UK)
  • ИГХ СО РАН во вконтакте
  • ИГХ СО РАН в твиттрер
  • ютьюб канал ИГХ СО РАН
  • Главная
  • Об Институте
    • Документы
    • Дирекция
    • История
    • Структура
    • Конкурс на должность
    • Библиотека
    • Геошкола
    • Интеграция с ВУЗами
    • Преподавательская деятельность
    • Закупки
    • ПРОФСОЮЗ
    • Награждения
    • Фотогалерея
    • Антикоррупционная деятельность
    • Восточно-Сибирское отделение РМО
  • Наука
    • Проекты
    • Ученый совет
    • Диссертационный совет
    • Научные направления
    • Стационар
    • Семинары
    • Отчеты
    • Публикации
    • Инновации
    • Оборудование
    • Интеллектуальная собственность
    • Научная школа
    • Совет научной молодёжи
    • Конференции
    • Экспедиции
  • Образование
    • Основные сведения
    • Абитуриенту
    • ЭИОС
  • ЦКП
    • Область Аккредитации
    • Структура ЦКП
  • Услуги
    • Аналитические исследования
    • Стандартные образцы
    • Детекторы ДТГ-4
    • Научные исследования
  • Контакты
    • Телефонный справочник
    • Справочник сотрудников
  • Ссылки
  • Аттестация научных работников
  • Охрана труда
  • Оценка результативности
  • Восточно-Сибирское отделение РМО
  • Сведения об образовательной организации
  • Абитуриенту
  • Порядок доступа к оборудованию ЦКП
  • Программа развития ИГХ СО РАН на 2019-2024
  • РЕКВИЗИТЫ ИГХ СО РАН
  • Выборы директора ИГХ СО РАН

СОВЕЩАНИЯ

  • Современные проблемы геохимии 2025
  • Граниты и эволюция Земли 2025
  • Глубинный магматизм, его источники и плюмы - 2024
  • Кремний 2024
  • Современные направления развития геохимии 2022
  • Петрографическое Совещание 2021

ОПТИМИЗАЦИЯ ИСП-МС ОПРЕДЕЛЕНИЯ ВЫСОКОЗАРЯДНЫХ ЭЛЕМЕНТОВ В ВЫСОКОУГЛЕРОДИСТЫХ ПОРОДАХ

Аношкина Ю.В.   Асочакова Е.М.  

 

Докладчик: Аношкина Ю.В.

За последние годы метод масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) совершил огромный скачок в своем развитии и стал основным методом для решения задач элементного и изотопного анализа редких и рассеянных элементов. ИСП-МС обладает широким диапазоном определяемых концентраций (9 порядков) и низкими пределами обнаружения (до 10-8-10-12 мг/л в растворе). Поскольку потенциалы ионизации всех металлов меньше потенциала ионизации аргона, ИСП-МС позволяет анализировать более 80 элементов, как встречающихся в природе, так и техногенных.
Тем не менее, основной проблемой является пробоподготовка геологических матриц к ИСП-МС. К настоящему времени разработано довольно много схем вскрытия геологических образцов [Casseta, Giaretta, 1990], но большинство из них многоступенчаты, трудоемки и длительны во времени. В частности, в нашей лаборатории разработано и внедрено несколько схем анализа горных пород разной природы, позволяющие экспрессно и достоверно определять высокозарядные элементы [Аношкина, Никитина, 2009].
Тем не менее, при анализе высокоуглеродистых пород возникла проблема, связанная с отсутствием воспроизводимости с методом сравнения - инструментальным нейтронно-активационным анализом (ИНАА). Данные породы совмещают в себе высокое содержание оксида кремния, алюминия и железа, а также органического вещества, поэтому представляют собой особую сложность для кислотного вскрытия.

В связи с этим перед нами была поставлена задача выявления причин систематического занижения результатов анализа высокоуглеродистых пород. Для решения поставленной задачи нами был проведен эксперимент по выявлению невскрываемой фракции на каждой стадии пробоподготовки. В качестве образца для анализа был выбран стандартный образец состава сланца черного (СЛг-1) Иркутского института геохимии им. А. П. Виноградова. Для этого после каждой стадии разложения были отобраны образующиеся осадки, высушены и проанализированы с помощью метода растровой электронной микроскопии с  рентгеноспектральным микроанализом (РЭМ РСМА). Надосадочная жидкость была проанализирована методом ИСП-МС. В ходе проведения эксперимента было выявлено, что на первой стадии происходит вскрытие матрицы с образованием нерастворимых фторидов алюминия, калия, железа. Состав осадка можно представить в виде оксидов: 0,01K2O∙0.08(Mg, Fe)O∙0.08Al2O3∙1.01F с включениями Y, Zr, Ta. В основной массе наблюдаются участки, обогащенные редкоземельными элементами (РЗЭ). На дальнейших стадиях разложения происходит частичное переведение фторидов РЗЭ в раствор и образование агрегатов, представляющих собой фториды алюминия с примесью петрогенных элементов.  При этом происходит сорбция и дефектные включения La, Ce, Nd, Y в структуру новообразующихся осадков (0.03Na2O∙0.1MgO∙0.13Al2O3∙1.4F, 0,01Na2O∙0,05(Mg, Fe)O∙0,05Al2O3∙0,09SiO2∙0,13K2O∙1,17F). 

Так же образующиеся осадки отличались высоким содержанием углистого вещества.  С целью выявления температурного диапазона, при котором происходит максимальный выжиг углистого вещества, образец был подвержен синхронному термическому анализу (СТА).
При исследовании стандартного образца черного сланца (СЛг-1) мы воспользовались методикой предложенной в работе коллектива авторов [Термический анализ минералов…,1974]. В качестве основного критерия при определении углистого вещества была выбрана температура начала экзотермического эффекта. Образец СЛг-1 содержит термоактивные минералы, такие как хлорит, карбонаты, серицит, монтмориллонит, термические эффекты которых регистрируются в одинаковых с углистым веществом интервалах температур, что в свою очередь делает невозможным его диагностирование. В этом случае предлагается двукратное нагревание образца. В первом нагревании используется тигли с плотно прилегающими крышками, когда свободный доступ воздуха ограничен, а затем второе нагревание в открытых тиглях. Двукратное нагревание позволяет однозначно решить вопрос о присутствие в пробе углистого вещества и определить температуру его выгорания. На первом этапе проба нагревалась до 1100 °С со скоростью 40 °С в минуту в воздушной среде, тем самым мы избавлялись от термических эффектов, характерных для минералов пробы.

При втором нагревании этаже проба нагревалась в открытых тиглях по следующей температурной программе: до 700 °С с скоростью 40 °С / мин, до 1000 °С с скоростью 5 °С / мин (рисунок 3). На первом сегменте нагревания на ДСК кривой четко отмечается эндотермический пик полиморфного превращения α-кварца в β-кварц  (-579). На втором сегменте на термогравиметрической кривой наблюдается небольшое увеличение массы образца, которое после уменьшается на 0,26 %. На кривой ДСК регистрируется экзотермической эффект пологой формы (начало +803,2). Экзотермический пик (+ 933,6) достигается после начала потери массы, что говорит о выгорании углерода из пробы через переход в углекислый газ (увеличение массы).

На основании данных, полученных с помощью термического анализа, нами был поставлен эксперимент по выжигу углистого вещества. Образцы выжигались 5, 10, 15 часов при температуре 850ºС в муфельной печи. При этом на основании данных полученных методом РЭМ, была модернизирована схема химической пробоподготовки, с акцентом на полное вскрытие матрицы на первой стадии разложения. Образец навеской 0,1г разлагался в три стадии HF – HCl - HNO3  с длительным выдерживанием в открытой системе. 

Из полученных данных видно что, увеличение экспозиции обжига особенно влияет на увеличение извлечения легких РЗЭ.
Таким образом, нами была получена информация о цепочке преобразований осадка в ходе вскрытия сложной геологической матрицы с высоким содержание углистого вещества. Найден нескрываемый субстрат с редкоземельным компонентом, что позволило модернизировать схему химической пробоподготовки.  Полученная схема химического анализа была применена к реальным образцам. Данные были сопоставлены с результатами ИНАА. Расхождение между результатами было признано незначимым.

Работа выполнена при финансовой поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг.

 

Литература:


1. Аношкина Ю.В., Никитина Е.И. Масс-спектральное (с индуктивно-связанной плазмой) определение редкоземельных элементов, циркония, гафния, ниобия и тантала в геологических образцах с применением микроволнового разложения. // Петрология магматических и метаморфических комплексов: Материалы Всероссийской научной конференции. – Томск, 2009. – выпуск 7. – С. 9 – 12.
2. Термический анализ минералов и горных пород. Л.: Недра, 1974, 393 с.
3. Casseta B., Giaretta A., Mezzacasa G. . Determination of Rare Earth and Other Trace Elements in Rock Samples by ICP-Mass Spectrometry: Comparison With Other Techniques// Atomic spectroscopy. – 1990. – V. 11. - №6. – P. 222 – 228.

Файл с полным текстом:  Аношкина Ю.В.


К списку докладов 

institutsmall

Юридический адрес:

Россия, 664033,

г. Иркутск, а/я 9,

ул. Фаворского, стр. 1А

Режим работы:

Понедельник - Пятница

08:00-17:00

обед 12:00-13:00

Выходной: Суббота, Воскресенье


Целевое обучение в магистратуре и аспирантуре

logo2


Антикоррупционная деятельность
Picture1


Nauka 5 1920Х1920


Национальные проекты России

npr


Полезные ссылки:

  • Мы в Colab
  • Мы в ResearchGate
© 2025, ФГБУН Институт геохимии им. А.П. Виноградова СО РАН
664033, г. Иркутск, ул. Фаворского, стр. 1а
+7(3952)546401
  • Министерство науки и высшего образования Российской Федерации
  • сайт СО РАН
?>